Is the acid-base status at rest related to endurance performance in 10-km runners?

Main Article Content

Thiago Lourenço
https://orcid.org/0000-0003-1518-9021
Lázaro A. S. Nunes
https://orcid.org/0000-0001-5934-1609
Guiherme G. Artioli
https://orcid.org/0000-0001-8463-2213
Luiz E. B. Martins
Rene Brenzikofer
https://orcid.org/0000-0002-2059-2037
Denise V. Macedo

Abstract

This study aimed to compare acid-base parameters between elite (ER) and amateur (AR) runners at rest and to explore potential correlations with 10-km running. Each participant completed a 10-km time trial on a 400-meter track, underwent an incremental exercise test in laboratory conditions, and provided a resting blood sample for analysis. Capillary blood sample were collected from the fingertip at rest. Measurements included pH, partial pressure of dioxide carbon (pCO2), haematocrit (Hct), haemoglobin (Hb) and lactate (Lac-), sodium (Na+), potassium (K+), chloride (Cl-) and bicarbonate (HCO3-) ions. Base excess (BE) and strong ions difference (SID) was calculated. No significant differences were observed between ER and AR for Hb, K+, Lac-, and pH (p > .05). ER exhibited significantly higher values for HCO3- (ER = 28.5 ± 1.8; AR = 25.7 ± 1.7 mmol˙l-1), Cl- (ER = 104.4 ± 3.83; AR = 100.1 ± 3.89 mmol˙l-1), BE (ER = 5.6 ± 1.6; AR = 3.21 ± 1.43 mmol˙l-1) and pCO2 (ER = 36.9 ± 3.7; AR = 33.9 ± 2.9 mmHg; p < .05). SID (ER = 49.0 ± 5.70; AR = 41.3 ± 5.23 mmol˙l-1; p < .05) and Na+ (ER = 140.0 ± 4.1; AR = 143.5 ± 3.3mmol˙l-1; p < .05) were significantly lower in ER. Strong correlations were found between HCO3-, SID, ventilatory threshold parameters and 10-km performance (p < .05). These findings suggest that resting acid-base status can be a useful indicator of 10-km performance and can assist in monitoring training-induced adaptations.

Downloads

Download data is not yet available.

Article Details

Section

Sport Medicine, Nutrition & Health

Author Biographies

Thiago Lourenço, State University of Campinas (UNICAMP)

Laboratory of Exercise Biochemistry (LABEX). Biochemistry Department. Biology Institute.

Lázaro A. S. Nunes, State University of Campinas (UNICAMP)

Laboratory of Exercise Biochemistry (LABEX). Biochemistry Department. Biology Institute.

Guiherme G. Artioli, São Paulo University

Laboratory of Nutrition and Metabolism Applied to Motor Activity. School of Physical Education and Sports.

Luiz E. B. Martins, State University of Campinas (UNICAMP

Laboratory of Exercise Physiology (Fisex). Faculty of Physical Education (FEF).

Rene Brenzikofer, State University of Campinas (UNICAMP)

Laboratory of Instrumentation for Biomechanics (LIB). Faculty of Physical Education (FEF).

Denise V. Macedo, State University of Campinas (UNICAMP)

Laboratory of Exercise Biochemistry (LABEX). Biochemistry Department. Biology Institute.

How to Cite

Lourenço, T., Nunes, L. A. S., Artioli, G. G., Martins, L. E. B., Brenzikofer, R., & Macedo, D. V. (2025). Is the acid-base status at rest related to endurance performance in 10-km runners?. Journal of Human Sport and Exercise , 20(2), 470-478. https://doi.org/10.55860/zw2eg158

References

Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60(6), 2020-2027. https://doi.org/10.1152/jappl.1986.60.6.2020

Bhambhani, Y., Malik, R., & Mookerjee, S. (2007). Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respiratory Physiology and Neurobiology, 156(2), 196-202. https://doi.org/10.1016/j.resp.2006.08.009

Carr, A. J., Hopkins, W. G., & Gore, C. J. (2011). Effects of acute alkalosis and acidosis on performance: A meta-analysis. Sports Medicine, 41(10), 801-814. https://doi.org/10.2165/11591440-000000000-00000

Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 17(2), 162-184. https://doi.org/10.1016/j.cmet.2012.12.012

Freyssenet, D., Berthon, P., & Denis, C. (1996). Mitochondrial Biogenesis in Skeletal Muscle in Response to Endurance Exercises. Archives of Physiology and Biochemistry, 104(2), 129-141. https://doi.org/10.1076/apab.104.2.129.12878

Geers, C., & Gros, G. (2000). Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiological Reviews, 80(2), 681-715. https://doi.org/10.1074/jbc.R100045200

Greenbaum, J., & Nirmalan, M. (2005). Acid-base balance: Stewart's physicochemical approach. In Current Anaesthesia and Critical Care (Vol. 16, Issue 3, pp. 133-135). https://doi.org/10.1016/j.cacc.2005.03.010

Grgic, J., Pedisic, Z., Saunders, B., Artioli, G. G., Schoenfeld, B. J., McKenna, M. J., Bishop, D. J., Kreider, R. B., Stout, J. R., Kalman, D. S., Arent, S. M., VanDusseldorp, T. A., Lopez, H. L., Ziegenfuss, T. N., Burke, L. M., Antonio, J., & Campbell, B. I. (2021). International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance. Journal of the International Society of Sports Nutrition, 18(1). https://doi.org/10.1186/s12970-021-00458-w

Hadzic, M., Eckstein, M. L., & Schugardt, M. (2019). The Impact of Sodium Bicarbonate on Performance in Response to Exercise Duration in Athletes: A Systematic Review. Journal of Sports Science and Medicine, 18, 271-281.

Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278

Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., & Vanhatalo, A. (2019). The maximal metabolic steady state: redefining the 'gold standard.' Physiological Reports, 7(10), e14098. https://doi.org/10.14814/phy2.14098

Jones, N. L. (2008). An obsession with CO2. Appl Physiol Nutr Metab, 33(4), 641-650. https://doi.org/10.1139/H08-040

Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: the physiology of champions. Journal of Physiology, 586(1), 35-44. https://doi.org/10.1113/jphysiol.2007.143834

Juel, C., Lundby, C., Sander, M., Calbet, J. A. L., & Hall, G. van. (2003). Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia. The Journal of Physiology, 548(Pt 2), 639-648. https://doi.org/10.1113/jphysiol.2002.035899

Kellum, J. a. (2005). Clinical review: reunification of acid-base physiology. Critical Care (London, England), 9(5), 500-507. https://doi.org/10.1186/cc3789

Lang, W., & Zander, R. (2002). The Accuracy of Calculated Base Excess in Blood. Clinical Chemistry and Laboratory Medicine : CCLM / FESCC, 40(4), 404-410. https://doi.org/10.1515/CCLM.2002.065

Lourenço, T. F., Martins, L. E., Tesutti, L. S., Brenzikofer, R., & Macedo, D. V. De. (2011). Reproducibility of an incremental treadmill VO(2)max test with gas exchange analysis for runners. Journal of Strength and Conditioning Research, 25(7), 1994-1999. https://doi.org/10.1519/JSC.0b013e3181e501d6

Lourenço, T. F., Nunes, L. A. S., Martins, L. E. B., Brenzikofer, R., & Macedo, D. V. (2019a). The Performance in 10 km Races Depends on Blood Buffering Capacity. Journal of Athletic Enhancement, 8(1), 1-7.

Lourenço, T. F., Nunes, L. A. S., Martins, L. E. B., Brenzikofer, R., & Macedo, D. V. (2019b). The Performance in 10 km Races Depends on Blood Buffering Capacity. Journal of Athletic Enhancement, 8(1), 1-7.

Montero, D., Breenfeldt-Andersen, A., Oberholzer, L., Haider, T., Goetze, J. P., Meinild-Lundby, A.-K., & Lundby, C. (2017). Erythropoiesis with endurance training: dynamics and mechanisms. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 312(6), R894-R902. https://doi.org/10.1152/ajpregu.00012.2017

Ponsot, E., Dufour, S., Zoll, J., Doutrelau, S., N'Guessan, B., Geny, B., Hoppeler, H., Lampert, E., Mettauer, B., Ventura-Clapier, R., & Richard, R. (2006). Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. Journal of Applied Physiology, 100(4), 1249-1257. https://doi.org/10.1152/japplphysiol.00361.2005

Poole, D C, Wilkerson, D. P., & Jones, A. M. (2008). Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. European Journal of Applied Physiology, 102(4), 403-410. https://doi.org/10.1007/s00421-007-0596-3

Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., & Jones, A. M. (2016). Critical Power. Medicine & Science in Sports & Exercise, 48(11), 2320-2334. https://doi.org/10.1249/MSS.0000000000000939

Putman, C. T., Jones, N. L., & Heigenhauser, G. J. F. (2003). Effects of short-term training on plasma acid-base balance during incremental exercise in man. The Journal of Physiology, 550(Pt 2), 585-603. https://doi.org/10.1113/jphysiol.2003.039743

Robergs, R. A., Dwyer, D., & Astorino, T. (2010). Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Medicine, 40(2), 95-111. https://doi.org/10.2165/11319670-000000000-00000

Stewart, P. (1983). Modern quantitative acid-base chemistry. J Physiol Pharmacol, 61, 144-161. https://doi.org/10.1139/y83-207

Tas, M., Senturk, E., Ekinci, D., Demirdag, R., Comakli, V., Bayram, M., Akyuz, M., Senturk, M., & Supuran, C. T. (2019). Comparison of blood carbonic anhydrase activity of athletes performing interval and continuous running exercise at high altitude. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 218-223. https://doi.org/10.1080/14756366.2018.1545768

Ucía, A. L., Oyos, J. H., Ardo, J. P., & Hicharro, J. L. C. (2000). Metabolic and Neuromuscular Adaptations to Endurance Training in Professional Cyclists : A Longitudinal Study. 50(3), 381-388. https://doi.org/10.2170/jjphysiol.50.381

Wasserman, K., Beaver, W. L., Sun, X. G., & Stringer, W. W. (2011). Arterial H+ regulation during exercise in humans. Respiratory Physiology and Neurobiology, 178(2), 191-195. https://doi.org/10.1016/j.resp.2011.05.018

Zander, R., & Lang, W. (2004). Base excess and strong ion difference: clinical limitations related to inaccuracy. Anesthesiology, 100(2), 459-460. https://doi.org/10.1097/00000542-200402000-00053

Zoladz, J. A., Sargeant, A. J., Emmerich, J., Stoklosa, J., & Zychowski, A. (1993). Changes in acid-base status of marathon runners during an incremental field test. European Journal of Applied Physiology and Occupational Physiology, 67(1), 71-76. https://doi.org/10.1007/BF00377708

Zoll, J., Ponsot, E., Dufour, S., Doutreleau, S., Ventura-Clapier, R., Vogt, M., Hoppeler, H., Richard, R., & Flück, M. (2006). Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. Journal of Applied Physiology, 100(4), 1258-1266. https://doi.org/10.1152/japplphysiol.00359.2005

Similar Articles

You may also start an advanced similarity search for this article.