Caloric restriction improves perceived exertion while conserving immunity, fatigue, inflammation, and physical performance in male professional soccer players A controlled randomized trial

Main Article Content

Gloria Ines Garcia-Morales
https://orcid.org/0000-0001-9164-9531
Gustavo Díaz
https://orcid.org/0000-0002-9216-7873
Alexander Niño
Juan del Campo
Carlos Tejero-González

Abstract

Purpose: In athletes, caloric restriction (CR) improves physiological mechanisms, although its effects on professional soccer players are unclear. This study aims to evaluate the effects of CR on physical performance, fatigue, and inflammation in male professional soccer players compared with a no-restriction diet. Methods: This was a controlled, randomized, parallel-group study with 28 participants. The experimental group received a CR diet (−25% of recommended energy intake; mean caloric intake: 2650 kcal/d). Controls received a normal caloric (NC) diet (mean caloric intake: 3500 kcal/d). Both groups received a protein supplement. Six weeks of intervention were followed by 6 weeks without intervention. Thereafter, the participants were allowed to eat ad libitum. The study evaluated leukocytes, lymphocytes, creatine phosphokinase (CPK), urea, testosterone, lactate dehydrogenase (LDH), rate of perceived exertion (RPE), countermovement-jump (CMJ), and squat jump (SJ). Results: Average age was 27.6 ± 4.4 years. After 6 and 12 weeks, differences between the two groups were insignificant in terms of the immune response, fatigue (CPK, urea, testosterone, and cortisol), and inflammation (LDH) (p > .05). The CR group had lower RPE levels at 12 weeks (0.01 vs. 0.62 points; p = .001) than the NC group. Conclusion: CR is an effective intervention for male professional soccer players, because it decreased RPE while preserving biochemical parameters.

Downloads

Download data is not yet available.

Article Details

How to Cite
Garcia-Morales, G. I., Díaz, G. ., Niño, A., del Campo, J., & Tejero-González, C. (2025). Caloric restriction improves perceived exertion while conserving immunity, fatigue, inflammation, and physical performance in male professional soccer players: A controlled randomized trial. Journal of Human Sport and Exercise , 20(2), 419-434. https://doi.org/10.55860/3a6khe67
Section
Sport Medicine, Nutrition & Health
Author Biographies

Gloria Ines Garcia-Morales, University El Bosque & Autonomous University of Madrid

Sports Medicine Specialty. Faculty of Medicine. University El Bosque.

Department of Physical Education, Sports and Human Motricity. Autonomous University of Madrid.

Gustavo Díaz, University El Bosque

Research Institute on Nutrition, Genetics and Metabolism. Faculty of Medicine. University El Bosque.

Research in Colombia Foundation.

Alexander Niño, District Institute of Recreation and Sports

Unit of Sciences Applied to Sport.

Juan del Campo, Autonomous University of Madrid

Department of Physical Education, Sports and Human Motricity.

Carlos Tejero-González, Autonomous University of Madrid

Department of Physical Education, Sports and Human Motricity.

How to Cite

Garcia-Morales, G. I., Díaz, G. ., Niño, A., del Campo, J., & Tejero-González, C. (2025). Caloric restriction improves perceived exertion while conserving immunity, fatigue, inflammation, and physical performance in male professional soccer players: A controlled randomized trial. Journal of Human Sport and Exercise , 20(2), 419-434. https://doi.org/10.55860/3a6khe67

References

Abedelmalek, S., Chtourou, H., Souissi, N., & Tabka, Z. (2015). Caloric Restriction Effect on Proinflammatory Cytokines, Growth Hormone, and Steroid Hormone Concentrations during Exercise in Judokas. Oxidative Medicine and Cellular Longevity, 2015, 1-8. https://doi.org/10.1155/2015/809492

Alshuwaier, G. O., Ghazzawi, H. A., Alaqil, A. I., Alsharif, Y. R., Bursais, A. K., & Amawi, A. T. (2022). Different training sessions impact on serum protein profile of Saudi professional soccer players. Nigerian Journal of Clinical Practice, 25(8), 1287-1294. https://doi.org/10.4103/njcp.njcp_72_22

Antonio Paoli, A., Mancin, L., Caprio, M., Monti, E., Narici, M. V., Cenci, L., Piccini, F., Pincella, M., Grigoletto, D., & Marcolin, G. (2021). Effects of 30 days of ketogenic diet on body composition, muscle strength, muscle area, metabolism, and performance in semi-professional soccer players. Journal of the International Society of Sports Nutrition, 18(1), 62. https://doi.org/10.1186/s12970-021-00459-9

Aragon, A. A., Schoenfeld, B. J., Wildman, R., Kleiner, S., VanDusseldorp, T., Taylor, L., Earnest, C. P., Arciero, P. J., Wilborn, C., Kalman, D. S., Stout, J. R., Willoughby, D. S., Campbell, B., Arent, S. M., Bannock, L., Smith-Ryan, A. E., & Antonio, J. (2017). International society of sports nutrition position stand: Diets and body composition. Journal of the International Society of Sports Nutrition, 14(1), 16. https://doi.org/10.1186/s12970-017-0174-y

Bailey, R. L. (2021). Overview of dietary assessment methods for measuring intakes of foods, beverages, and dietary supplements in research studies. Current Opinion in Biotechnology, 70, 91-96. https://doi.org/10.1016/j.copbio.2021.02.007

Barros, L. L. de, Alves, D. M., Zogaib, R., & Conforti, C. (2017). Creatine kinase levels in soccer players after matches. Day 2 Poster Presentations, A6.1-A6. https://doi.org/10.1136/bjsports-2017-098966.15

Becker, M., Sperlich, B., Zinner, C., & Achtzehn, S. (2020). Intra-Individual and Seasonal Variation of Selected Biomarkers for Internal Load Monitoring in U-19 Soccer Players. Frontiers in Physiology, 11, 838. https://doi.org/10.3389/fphys.2020.00838

Berriel, G. P., Costa, R. R., da Silva, E. S., Schons, P., de Vargas, G. D., Peyré-Tartaruga, L. A., & Kruel, L. F. M. (2020). Stress and recovery perception, creatine kinase levels, and performance parameters of male volleyball athletes in a preseason for a championship. Sports Medicine - Open, 6(1), 26. https://doi.org/10.1186/s40798-020-00255-w

Betts, J. A., Gonzalez, J. T., Burke, L. M., Close, G. L., Garthe, I., James, L. J., Jeukendrup, A. E., Morton, J. P., Nieman, D. C., Peeling, P., Phillips, S. M., Stellingwerff, T., van Loon, L. J. C., Williams, C., Woolf, K., Maughan, R., & Atkinson, G. (2020). PRESENT 2020: Text Expanding on the Checklist for Proper Reporting of Evidence in Sport and Exercise Nutrition Trials. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 2-13. https://doi.org/10.1123/ijsnem.2019-0326

Calbet, J. A. L., Ponce-González, J. G., Calle-Herrero, J. D. L., Perez-Suarez, I., Martin-Rincon, M., Santana, A., Morales-Alamo, D., & Holmberg, H.-C. (2017). Exercise Preserves Lean Mass and Performance during Severe Energy Deficit: The Role of Exercise Volume and Dietary Protein Content. Frontiers in Physiology, 8, 483. https://doi.org/10.3389/fphys.2017.00483

Capó, X., Martorell, M., Ferrer, M. D., Sureda, A., Pons, V., Domingo, J. C., Drobnic, F., Martínez-Rodríguez, A., Leyva-Vela, B., Sarabia, J. M., Herranz-López, M., Roche, E., Tur, J. A., & Pons, A. (2020). Calorie Restriction Improves Physical Performance and Modulates the Antioxidant and Inflammatory Responses to Acute Exercise. Nutrients, 12(4), 930. https://doi.org/10.3390/nu12040930

Chen, C. (Joyce), Lin, S.-Y., Liao, Y.-H., Li, Z., & Wong, A. M.-K. (2015). Late-onset caloric restriction alters skeletal muscle metabolism by modulating pyruvate metabolism. American Journal of Physiology-Endocrinology and Metabolism, 308(11), E942-E949. https://doi.org/10.1152/ajpendo.00508.2014

Cherif, A., Roelands, B., Meeusen, R., & Chamari, K. (2016). Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults. Sports Medicine, 46(1), 35-47. https://doi.org/10.1007/s40279-015-0408-6

Collins, J., Maughan, R. J., Gleeson, M., Bilsborough, J., Jeukendrup, A., Morton, J. P., Phillips, S. M., Armstrong, L., Burke, L. M., Close, G. L., Duffield, R., Larson-Meyer, E., Louis, J., Medina, D., Meyer, F., Rollo, I., Sundgot-Borgen, J., Wall, B. T., Boullosa, B., … McCall, A. (2021). UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. British Journal of Sports Medicine, 55(8), 416-416. https://doi.org/10.1136/bjsports-2019-101961

Contrepois, K., Wu, S., Moneghetti, K. J., Hornburg, D., Ahadi, S., Tsai, M.-S., Metwally, A. A., Wei, E., Lee-McMullen, B., Quijada, J. V., Chen, S., Christle, J. W., Ellenberger, M., Balliu, B., Taylor, S., Durrant, M. G., Knowles, D. A., Choudhry, H., Ashland, M., … Snyder, M. P. (2020). Molecular Choreography of Acute Exercise. Cell, 181(5), 1112-1130.e16. https://doi.org/10.1016/j.cell.2020.04.043

Djaoui, L., Haddad, M., Chamari, K., & Dellal, A. (2017). Monitoring training load and fatigue in soccer players with physiological markers. Physiology & Behavior, 181, 86-94. https://doi.org/10.1016/j.physbeh.2017.09.004

Ferguson, L. M., Rossi, K. A., Ward, E., Jadwin, E., Miller, T. A., & Miller, W. C. (2009). Effects of Caloric Restriction and Overnight Fasting on Cycling Endurance Performance. Journal of Strength and Conditioning Research, 23(2), 560-570. https://doi.org/10.1519/JSC.0b013e31818f058b

Field, A., Corr, L. D., Sarmento, H., Naughton, R., Clifford, T., Haines, M., Page, R. M., & Harper, L. D. (2023). The Impact of 120 Minutes of Soccer-Specific Exercise on Recovery. Research Quarterly for Exercise and Sport, 94(1), 237-245. https://doi.org/10.1080/02701367.2021.1964697

García-Morales, G. I., Niño-Rey, M. A., & Alvear-Ordenes, I. (2019). Efecto de la restricción calórica sobre la composición corporal y la capacidad de salto en jugadoras de fútbol. Revista de Nutrición Clínica y Metabolismo, 2(2), 16-25. https://doi.org/10.35454/rncm.v2n2.003

Gharahdaghi, N., Phillips, B. E., Szewczyk, N. J., Smith, K., Wilkinson, D. J., & Atherton, P. J. (2021). Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Frontiers in Physiology, 11, 621226. https://doi.org/10.3389/fphys.2020.621226

Glancy, B., Kane, D. A., Kavazis, A. N., Goodwin, M. L., Willis, W. T., & Gladden, L. B. (2021). Mitochondrial lactate metabolism: History and implications for exercise and disease. The Journal of Physiology, 599(3), 863-888. https://doi.org/10.1113/JP278930

Golbidi, S., Daiber, A., Korac, B., Li, H., Essop, M. F., & Laher, I. (2017). Health Benefits of Fasting and Caloric Restriction. Current Diabetes Reports, 17(12), 123. https://doi.org/10.1007/s11892-017-0951-7

Green, C. L., Lamming, D. W., & Fontana, L. (2022). Molecular mechanisms of dietary restriction promoting health and longevity. Nature Reviews Molecular Cell Biology, 23(1), 56-73. https://doi.org/10.1038/s41580-021-00411-4

Guest, N. S., VanDusseldorp, T. A., Nelson, M. T., Grgic, J., Schoenfeld, B. J., Jenkins, N. D. M., Arent, S. M., Antonio, J., Stout, J. R., Trexler, E. T., Smith-Ryan, A. E., Goldstein, E. R., Kalman, D. S., & Campbell, B. I. (2021). International society of sports nutrition position stand: Caffeine and exercise performance. Journal of the International Society of Sports Nutrition, 18(1), 1. https://doi.org/10.1186/s12970-020-00383-4

Hammouda, O., Chtourou, H., Aloui, A., Chahed, H., Kallel, C., Miled, A., Chamari, K., Chaouachi, A., & Souissi, N. (2013). Concomitant Effects of Ramadan Fasting and Time-Of-Day on Apolipoprotein AI, B, Lp-a and Homocysteine Responses during Aerobic Exercise in Tunisian Soccer Players. PLoS ONE, 8(11), e79873. https://doi.org/10.1371/journal.pone.0079873

Hector, A. J., & Phillips, S. M. (2018). Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 170-177. https://doi.org/10.1123/ijsnem.2017-0273

Huovinen, H. T., Hulmi, J. J., Isolehto, J., Kyröläinen, H., Puurtinen, R., Karila, T., Mackala, K., & Mero, A. A. (2015). Body Composition and Power Performance Improved After Weight Reduction in Male Athletes Without Hampering Hormonal Balance. Journal of Strength and Conditioning Research, 29(1), 29-36. https://doi.org/10.1519/JSC.0000000000000619

Ito, E., Sato, Y., Kobayashi, T., Soma, T., Matsumoto, T., Kimura, A., Miyamoto, K., Matsumoto, H., Matsumoto, M., Nakamura, M., Sato, K., & Miyamoto, T. (2023). Low energy availability reduces bone mass and gonadal function in male mice. Journal of Bone and Mineral Metabolism, 41(2), 182-192. https://doi.org/10.1007/s00774-023-01413-2

Jagim, A. R., Camic, C. L., Kisiolek, J., Luedke, J., Erickson, J., Jones, M. T., & Oliver, J. M. (2018). Accuracy of Resting Metabolic Rate Prediction Equations in Athletes. Journal of Strength and Conditioning Research, 32(7), 1875-1881. https://doi.org/10.1519/JSC.0000000000002111

Keen, R. (2018). Nutrition-Related Considerations in Soccer: A Review. American Journal of Orthopedics (Belle Mead, N.J.), 47(12).

Khaitin, V., Bezuglov, E., Lazarev, A., Matveev, S., Ivanova, O., Maffulli, N., & Achkasov, E. (2021). Markers of muscle damage and strength performance in professional football (soccer) players during the competitive period. Annals of Translational Medicine, 9(2), 113-113. https://doi.org/10.21037/atm-20-2923

Kitaoka, Y., Nakazato, K., & Ogasawara, R. (2016). Combined effects of resistance training and calorie restriction on mitochondrial fusion and fission proteins in rat skeletal muscle. Journal of Applied Physiology, 121(3), 806-810. https://doi.org/10.1152/japplphysiol.00465.2016

Lee, A. H., & Dixit, V. D. (2020). Dietary Regulation of Immunity. Immunity, 53(3), 510-523. https://doi.org/10.1016/j.immuni.2020.08.013

Liu, Y., Hong, F., Lebaka, V. R., Mohammed, A., Ji, L., Zhang, Y., & Korivi, M. (2021). Calorie Restriction With Exercise Intervention Improves Inflammatory Response in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 12, 754731. https://doi.org/10.3389/fphys.2021.754731

Longland, T. M., Oikawa, S. Y., Mitchell, C. J., Devries, M. C., & Phillips, S. M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. The American Journal of Clinical Nutrition, 103(3), 738-746. https://doi.org/10.3945/ajcn.115.119339

Madeo, F., Carmona-Gutierrez, D., Hofer, S. J., & Kroemer, G. (2019). Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metabolism, 29(3), 592-610. https://doi.org/10.1016/j.cmet.2019.01.018

Marqués-Jiménez, D., Calleja-González, J., Arratibel-Imaz, I., & Terrados, N. (2022). Biochemical and Physical Performance Responses to a Soccer Match after a 72-Hour Recovery Period. Sports, 10(10), 140. https://doi.org/10.3390/sports10100140

Marttinen, M., Ala-Jaakkola, R., Laitila, A., & Lehtinen, M. J. (2020). Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients, 12(10), 2936. https://doi.org/10.3390/nu12102936

McGee, S. L., & Hargreaves, M. (2020). Exercise adaptations: Molecular mechanisms and potential targets for therapeutic benefit. Nature Reviews Endocrinology, 16(9), 495-505. https://doi.org/10.1038/s41574-020-0377-1

Meydani, S. N., Das, S. K., Pieper, C. F., Lewis, M. R., Klein, S., Dixit, V. D., Gupta, A. K., Villareal, D. T., Bhapkar, M., Huang, M., Fuss, P. J., Roberts, S. B., Holloszy, J. O., & Fontana, L. (2016). Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: A randomized controlled trial in non-obese humans. Aging, 8(7), 1416-1431. https://doi.org/10.18632/aging.100994

Mohr, M., Draganidis, D., Chatzinikolaou, A., Barbero-Álvarez, J. C., Castagna, C., Douroudos, I., Avloniti, A., Margeli, A., Papassotiriou, I., Flouris, A. D., Jamurtas, A. Z., Krustrup, P., & Fatouros, I. G. (2016). Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. European Journal of Applied Physiology, 116(1), 179-193. https://doi.org/10.1007/s00421-015-3245-2

Most, J., & Redman, L. M. (2020). Impact of calorie restriction on energy metabolism in humans. Experimental Gerontology, 133, 110875. https://doi.org/10.1016/j.exger.2020.110875

Murphy, R. M., Watt, M. J., & Febbraio, M. A. (2020). Metabolic communication during exercise. Nature Metabolism, 2(9), 805-816. https://doi.org/10.1038/s42255-020-0258-x

Nowakowska, A., Kostrzewa-Nowak, D., Buryta, R., & Nowak, R. (2019). Blood Biomarkers of Recovery Efficiency in Soccer Players. International Journal of Environmental Research and Public Health, 16(18), 3279. https://doi.org/10.3390/ijerph16183279

Nuñez, J., Suarez-Arrones, L., De Hoyo, M., & Loturco, I. (2021). Strength Training in Professional Soccer: Effects on Short-sprint and Jump Performance. International Journal of Sports Medicine, 43(06), a-1653-7350. https://doi.org/10.1055/a-1653-7350

Okawa, T., Nagai, M., & Hase, K. (2021). Dietary Intervention Impacts Immune Cell Functions and Dynamics by Inducing Metabolic Rewiring. Frontiers in Immunology, 11, 623989. https://doi.org/10.3389/fimmu.2020.623989

Peos, J. J., Helms, E. R., Fournier, P. A., Krieger, J., & Sainsbury, A. (2021). A 1-week diet break improves muscle endurance during an intermittent dieting regime in adult athletes: A pre-specified secondary analysis of the ICECAP trial. PLOS ONE, 16(2), e0247292. https://doi.org/10.1371/journal.pone.0247292

Peos, J. J., Helms, E. R., Fournier, P. A., Ong, J., Hall, C., Krieger, J., & Sainsbury, A. (2021). Continuous versus Intermittent Dieting for Fat Loss and Fat-Free Mass Retention in Resistance-trained Adults: The ICECAP Trial. Medicine & Science in Sports & Exercise, 53(8), 1685-1698. https://doi.org/10.1249/MSS.0000000000002636

Peos, J., Norton, L., Helms, E., Galpin, A., & Fournier, P. (2019). Intermittent Dieting: Theoretical Considerations for the Athlete. Sports, 7(1), 22. https://doi.org/10.3390/sports7010022

Peres, R. A. S., Barbosa, I. M., Arouca, I. R., Paiva, K. V., Coutinho, T. B., Tadeu, V. C., Morales, A. P., Ribeiro, B. G., Feitosa, N. M., Barros, C. M. D., Fonseca, R. N. D., & Souza-Menezes, J. D. (2022). Kidney functions adaptations of professional soccer players in response to an entire game season. Anais Da Academia Brasileira De Ciencias, 94(suppl 3), e20211536.

Pons, V., Riera, J., Capó, X., Martorell, M., Sureda, A., Tur, J. A., Drobnic, F., & Pons, A. (2018). Calorie restriction regime enhances physical performance of trained athletes. Journal of the International Society of Sports Nutrition, 15(1), 12. https://doi.org/10.1186/s12970-018-0214-2

Rhoads, T. W., & Anderson, R. M. (2022). Caloric restriction has a new player. Science, 375(6581), 620-621. https://doi.org/10.1126/science.abn6576

Rodríguez-Rosell, D., Mora-Custodio, R., Franco-Márquez, F., Yáñez-García, J. M., & González-Badillo, J. J. (2017). Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship With the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players. Journal of Strength and Conditioning Research, 31(1), 196-206. https://doi.org/10.1519/JSC.0000000000001476

Rosimus, C. (2018). Case Study: The Effect of Nutritional Intervention on Body Composition and Physical Performance of a Female Squash Player. International Journal of Sport Nutrition and Exercise Metabolism, 28(3), 279-283. https://doi.org/10.1123/ijsnem.2017-0069

Salvador Castell, G. (2015). ¿Qué y cuánto comemos? Método de Recuerdo 24 horas. Nutricion Hospitalaria, 3, 46-48. https://doi.org/10.3305/nh.2015.31.sup3.8750

Sarin, H. V., Gudelj, I., Honkanen, J., Ihalainen, J. K., Vuorela, A., Lee, J. H., Jin, Z., Terwilliger, J. D., Isola, V., Ahtiainen, J. P., Häkkinen, K., Jurić, J., Lauc, G., Kristiansson, K., Hulmi, J. J., & Perola, M. (2019). Molecular Pathways Mediating Immunosuppression in Response to Prolonged Intensive Physical Training, Low-Energy Availability, and Intensive Weight Loss. Frontiers in Immunology, 10, 907. https://doi.org/10.3389/fimmu.2019.00907

Scheffer, D. da L., & Latini, A. (2020). Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(10), 165823. https://doi.org/10.1016/j.bbadis.2020.165823

Shirai, T., Uemichi, K., Hidaka, Y., Kitaoka, Y., & Takemasa, T. (2021). Effect of lactate administration on mouse skeletal muscle under calorie restriction. Current Research in Physiology, 4, 202-208. https://doi.org/10.1016/j.crphys.2021.09.001

Silva, J. R., Rumpf, M. C., Hertzog, M., Castagna, C., Farooq, A., Girard, O., & Hader, K. (2018). Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports Medicine, 48(3), 539-583. https://doi.org/10.1007/s40279-017-0798-8

Skorski, S., Pitsch, W., Barth, V., Walter, M., Pfeiffer, M., Ferrauti, A., Kellmann, M., Hecksteden, A., & Meyer, T. (2022). Individualised reference ranges for markers of muscle recovery assessment in soccer. European Journal of Sport Science, 1-9. https://doi.org/10.1080/17461391.2022.2134052

Souglis, A., Bogdanis, G. C., Giannopoulou, I., Papadopoulos, C., & Apostolidis, N. (2015). Comparison of Inflammatory Responses and Muscle Damage Indices Following a Soccer, Basketball, Volleyball and Handball Game at an Elite Competitive Level. Research in Sports Medicine, 23(1), 59-72. https://doi.org/10.1080/15438627.2014.975814

Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501-528. https://doi.org/10.1016/j.jand.2015.12.006

Tinsley, G. M., Graybeal, A. J., & Moore, M. L. (2019). Resting metabolic rate in muscular physique athletes: Validity of existing methods and development of new prediction equations. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 44(4), 397-406. https://doi.org/10.1139/apnm-2018-0412

Travers, G., Kippelen, P., Trangmar, S. J., & González-Alonso, J. (2022). Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells, 11(3), 383. https://doi.org/10.3390/cells11030383

Turocy, P. S., DePalma, B. F., Horswill, C. A., Laquale, K. M., Martin, T. J., Perry, A. C., Somova, M. J., & Utter, A. C. (2011). National Athletic Trainers' Association Position Statement: Safe Weight Loss and Maintenance Practices in Sport and Exercise. Journal of Athletic Training, 46(3), 322-336. https://doi.org/10.4085/1062-6050-46.3.322

Vidić, V., Ilić, V., Toskić, L., Janković, N., & Ugarković, D. (2021). Effects of calorie restricted low carbohydrate high fat ketogenic vs. Non-ketogenic diet on strength, body-composition, hormonal and lipid profile in trained middle-aged men. Clinical Nutrition, 40(4), 1495-1502. https://doi.org/10.1016/j.clnu.2021.02.028

Wang, J., Liu, S., Li, G., & Xiao, J. (2020). Exercise Regulates the Immune System. In J. Xiao (Ed.), Physical Exercise for Human Health (Vol. 1228, pp. 395-408). Springer Singapore. https://doi.org/10.1007/978-981-15-1792-1_27

Xin, G., & Eshaghi, H. (2021). Effect of omega‐3 fatty acids supplementation on indirect blood markers of exercise‐induced muscle damage: Systematic review and meta‐analysis of randomized controlled trials. Food Science & Nutrition, 9(11), 6429-6442. https://doi.org/10.1002/fsn3.2598

Zouhal, H., Saeidi, A., Salhi, A., Li, H., Essop, M. F., Laher, I., Rhibi, F., Amani-Shalamzari, S., & Ben Abderrahman, A. (2020). Exercise Training and Fasting: Current Insights. Open Access Journal of Sports Medicine, Volume 11, 1-28. https://doi.org/10.2147/OAJSM.S224919

Similar Articles

You may also start an advanced similarity search for this article.