Mechanisms of adaptations in cardiorespiratory fitness with exercise prescriptions differing in volume and intensity in middle-age men

Main Article Content

Jiashi Lin
https://orcid.org/0000-0002-2696-6204
Qiqi Huang
Xinsheng Zhong
Ahua Zhang
Peixiang Lin

Abstract

Background: To examine the mechanisms of adaptations in cardiorespiratory fitness with different dose of amount and intensity exercise training in middle-aged men. Methods: A total of 67 sedentary subjects aged 40-49 yr were assigned to participate for 12 weeks in a control group or in one of three exercise groups: 1) low volume/moderate intensity 2) low volume/vigorous intensity and 3) high volume/vigorous intensity. They were tested for VO2max, cardiac output (Q) and stroke volume (SV) before and after training and maximal arterial-venous oxygen difference (a-vO2diff) calculated by the Fick Equation. Results: Contrasted to control group, VO2max increased similar in both LVVI and HVVI groups after 12 weeks; It indicated that the intensity of exercise appears to make a greater benefit than the amount of exercise on VO2max. However, Maximal cardiac output (Qmax) and a-vO2diff contributed to increase VO2max were differences in both of vigorous intensity groups. In LVVI group, Qmax together with maximal a-vO2diff contributed to the greater VO2max; in HVVI group, the majority of the increment in VO2max was relied on larger Qmax whereas a widened a-vO2diff. Conclusion: It is appropriate to recommend vigorous intensity exercise to improve cardiorespiratory fitness and encourage higher amount to confer additional benefit for Qmax.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lin, J., Huang, Q., Zhong, X., Zhang, A., & Lin, P. (2024). Mechanisms of adaptations in cardiorespiratory fitness with exercise prescriptions differing in volume and intensity in middle-age men. Journal of Human Sport and Exercise , 20(1), 130-143. https://doi.org/10.55860/qmfy7d62
Section
Sport Medicine, Nutrition & Health
Author Biographies

Jiashi Lin, Jimei University

College of Physical Education.

Qiqi Huang, Jimei University

College of Physical Education.

Xinsheng Zhong, Xiamen Sport School

Department of Sports Teaching.

Ahua Zhang, Xiamen Huatian International Vocational College

Institute of Sports Science.

Peixiang Lin, Xiamen Huatian International Vocational College

Institute of Sports Science.

How to Cite

Lin, J., Huang, Q., Zhong, X., Zhang, A., & Lin, P. (2024). Mechanisms of adaptations in cardiorespiratory fitness with exercise prescriptions differing in volume and intensity in middle-age men. Journal of Human Sport and Exercise , 20(1), 130-143. https://doi.org/10.55860/qmfy7d62

References

Åstrand, P.-O. (2003). Textbook of work physiology: Physiological bases of exercise. Human kinetics.

Bostad, W., Valentino, S. E., McCarthy, D. G., Richards, D. L., MacInnis, M. J., MacDonald, M. J., & Gibala, M. J. (2021). Twelve weeks of sprint interval training increases peak cardiac output in previously untrained individuals. European Journal of Applied Physiology, 121(9), 2449-2458. https://doi.org/10.1007/s00421-021-04714-4

Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., Pérusse, L., Leon, A. S., & Rao, D. C. (1999). Familial aggregation of VO(2max) response to exercise training: Results from the HERITAGE Family Study. Journal of Applied Physiology (Bethesda, Md.: 1985), 87(3), 1003-1008. https://doi.org/10.1152/jappl.1999.87.3.1003

Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., Rao, D. C., & Rankinen, T. (2011). Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs. Journal of Applied Physiology (Bethesda, Md.: 1985), 110(5), 1160-1170. https://doi.org/10.1152/japplphysiol.00973.2010

Dogra, S., Spencer, M. D., & Paterson, D. H. (n.d.). Higher cardiorespiratory fitness in older trained women is due to preserved stroke volume.

Ekblom, B., Astrand, P. O., Saltin, B., Stenberg, J., & Wallström, B. (1968). Effect of training on circulatory response to exercise. Journal of Applied Physiology, 24(4), 518-528. https://doi.org/10.1152/jappl.1968.24.4.518

Franklin, B. A., Wedig, I. J., Sallis, R. E., Lavie, C. J., & Elmer, S. J. (2023). Physical Activity and Cardiorespiratory Fitness as Modulators of Health Outcomes. Mayo Clinic Proceedings, 98(2), 316-331. https://doi.org/10.1016/j.mayocp.2022.09.011

Gibala, M. J., & MacInnis, M. J. (2022). Physiological basis of brief, intense interval training to enhance maximal oxygen uptake: A mini-review. American Journal of Physiology-Cell Physiology, 323(5), C1410-C1416. https://doi.org/10.1152/ajpcell.00143.2022

Gordon, D., Caddy, O., Merzbach, V., Gernigon, M., Baker, J., Scruton, A., Keiller, D., & Barnes, R. (2015). Prior Knowledge of Trial Number Influences the Incidence of Plateau at VO2max. Journal of Sports Science & Medicine, 14(1), 47-53.

Gossard, D., Haskell, W. L., Taylor, C. B., Mueller, J. K., Rogers, F., Chandler, M., Ahn, D. K., Miller, N. H., & DeBusk, R. F. (1986). Effects of low- and high-intensity home-based exercise training on functional capacity in healthy middle-aged men. The American Journal of Cardiology, 57(6), 446-449. https://doi.org/10.1016/0002-9149(86)90770-8

Hansen, D., Dendale, P., Jonkers, R. a. M., Beelen, M., Manders, R. J. F., Corluy, L., Mullens, A., Berger, J., Meeusen, R., & van Loon, L. J. C. (2009). Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients. Diabetologia, 52(9), 1789-1797. https://doi.org/10.1007/s00125-009-1354-3

Hollowell, R. P., Willis, L. H., Slentz, C. A., Topping, J. D., Bhakpar, M., & Kraus, W. E. (2009). Effects of exercise training amount on physical activity energy expenditure. Medicine and Science in Sports and Exercise, 41(8), 1640-1644. https://doi.org/10.1249/MSS.0b013e31819c71a4

Guidelines for data processing and analysis of the international physical activity questionnaire (IPAQ) - short and long forms, www.ipaq.ki.se, 2005: 1- 15.

Joyner, M. J., & Casey, D. P. (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiological Reviews, 95(2), 549-601. https://doi.org/10.1152/physrev.00035.2013

Kokkinos, P. F., Faselis, C., Myers, J., Narayan, P., Sui, X., Zhang, J., Lavie, C. J., Moore, H., Karasik, P., & Fletcher, R. (2017). Cardiorespiratory Fitness and Incidence of Major Adverse Cardiovascular Events in US Veterans: A Cohort Study. Mayo Clinic Proceedings, 92(1), 39-48. https://doi.org/10.1016/j.mayocp.2016.09.013

Kraus, W. E., Torgan, C. E., Duscha, B. D., Norris, J., Brown, S. A., Cobb, F. R., Bales, C. W., Annex, B. H., Samsa, G. P., Houmard, J. A., & Slentz, C. A. (2001). Studies of a targeted risk reduction intervention through defined exercise (STRRIDE). Medicine and Science in Sports and Exercise, 33(10), 1774-1784. https://doi.org/10.1097/00005768-200110000-00025

Kraus William E., Houmard Joseph A., Duscha Brian D., Knetzger Kenneth J., Wharton Michelle B., McCartney Jennifer S., Bales Connie W., Henes Sarah, Samsa Gregory P., Otvos James D., Kulkarni Krishnaji R., & Slentz Cris A. (2002). Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. New England Journal of Medicine, 347(19), 1483-1492. https://doi.org/10.1056/NEJMoa020194

Laukkanen, J. A., Pukkala, E., Rauramaa, R., Mäkikallio, T. H., Toriola, A. T., & Kurl, S. (2010). Cardiorespiratory fitness, lifestyle factors and cancer risk and mortality in Finnish men. European Journal of Cancer, 46(2), 355-363. https://doi.org/10.1016/j.ejca.2009.07.013

Lee, D., Pate, R. R., Lavie, C. J., Sui, X., Church, T. S., & Blair, S. N. (2014). Leisure-Time Running Reduces All-Cause and Cardiovascular Mortality Risk. Journal of the American College of Cardiology, 64(5), 472-481. https://doi.org/10.1016/j.jacc.2014.04.058

Mandić, M., Hansson, B., Lovrić, A., Sundblad, P., Vollaard, N. B. J., Lundberg, T. R., Gustafsson, T., & Rullman, E. (2022). Improvements in Maximal Oxygen Uptake after Sprint-Interval Training Coincide with Increases in Central Hemodynamic Factors. Medicine and Science in Sports and Exercise, 54(6), 944-952. https://doi.org/10.1249/MSS.0000000000002872

Murias, J. M., Kowalchuk, J. M., & Paterson, D. H. (2010). Time course and mechanisms of adaptations in cardiorespiratory fitness with endurance training in older and young men. J Appl Physiol, 108. https://doi.org/10.1152/japplphysiol.01152.2009

Nordby, P., Auerbach, P. L., Rosenkilde, M., Kristiansen, L., Thomasen, J. R., Rygaard, L., Groth, R., Brandt, N., Helge, J. W., Richter, E. A., Ploug, T., & Stallknecht, B. (2012). Endurance Training Per Se Increases Metabolic Health in Young, Moderately Overweight Men. Obesity, 20(11), 2202-2212. https://doi.org/10.1038/oby.2012.70

Nottin, S., Ménétrier, A., Rupp, T., Boussuges, A., & Tordi, N. (2012). Role of left ventricular untwisting in diastolic dysfunction after long duration exercise. European Journal of Applied Physiology, 112(2), 525-533. https://doi.org/10.1007/s00421-011-2001-5

O'Donovan, G., Lee, I.-M., Hamer, M., & Stamatakis, E. (2017). Association of "Weekend Warrior" and Other Leisure Time Physical Activity Patterns With Risks for All-Cause, Cardiovascular Disease, and Cancer Mortality. JAMA Internal Medicine, 177(3), 335. https://doi.org/10.1001/jamainternmed.2016.8014

Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, Buchner D, Ettinger W, Heath GW, King AC. (1995). Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA,273(5):402-407. https://doi.org/10.1001/jama.273.5.402

Rowland, T. W., & Willers, M. E. (2010). Reproducibility of Doppler measures of ventricular function during maximal upright cycling. Cardiology in the Young, 20(6), 676-679. https://doi.org/10.1017/S1047951110000983

Rowland, T., & Whatley Blum, J. (2000). Cardiac dynamics during upright cycle exercise in boys. American Journal of Human Biology, 12(6), 749-757. https://doi.org/10.1002/1520-6300(200011/12)12:6<749::AID-AJHB4>3.0.CO;2-W

Sagelv, E. H., Hammer, T., Hamsund, T., Rognmo, K., Pettersen, S. A., & Pedersen, S. (2019). High Intensity Long Interval Sets Provides Similar Enjoyment as Continuous Moderate Intensity Exercise. The Tromsø Exercise Enjoyment Study. Frontiers in Psychology, 10, 1788. https://doi.org/10.3389/fpsyg.2019.01788

Skinner, J. S., Jaskólski, A., Jaskólska, A., Krasnoff, J., Gagnon, J., Leon, A. S., Rao, D. C., Wilmore, J. H., Bouchard, C., & HERITAGE Family Study. (2001). Age, sex, race, initial fitness, and response to training: The HERITAGE Family Study. Journal of Applied Physiology (Bethesda, Md.: 1985), 90(5), 1770-1776. https://doi.org/10.1152/jappl.2001.90.5.1770

Steell, L., Ho, F. K., Sillars, A., Petermann-Rocha, F., Li, H., Lyall, D. M., Iliodromiti, S., Welsh, P., Anderson, J., MacKay, D. F., Pell, J. P., Sattar, N., Gill, J. M., Gray, S. R., & Celis-Morales, C. A. (2019). Dose-response associations of cardiorespiratory fitness with all-cause mortality and incidence and mortality of cancer and cardiovascular and respiratory diseases: The UK Biobank cohort study. British Journal of Sports Medicine, 53(21), 1371-1378. https://doi.org/10.1136/bjsports-2018-099093

Støren, Ø., Helgerud, J., Sæbø, M., Støa, E. M., Bratland-Sanda, S., Unhjem, R. J., Hoff, J., & Wang, E. (2017). The Effect of Age on the V˙O2max Response to High-Intensity Interval Training. Medicine & Science in Sports & Exercise, 49(1), 78-85. https://doi.org/10.1249/MSS.0000000000001070

Sui, X., Sarzynski, M. A., Lee, D., & Kokkinos, P. F. (2017). Impact of Changes in Cardiorespiratory Fitness on Hypertension, Dyslipidemia and Survival: An Overview of the Epidemiological Evidence. Progress in Cardiovascular Diseases, 60(1), 56-66. https://doi.org/10.1016/j.pcad.2017.02.006

Talsnes, R. K., Van Den Tillaar, R., & Sandbakk, Ø. (2022). Effects of Increased Load of Low- Versus High-Intensity Endurance Training on Performance and Physiological Adaptations in Endurance Athletes. International Journal of Sports Physiology and Performance, 17(2), 216-225. https://doi.org/10.1123/ijspp.2021-0190

Tari, A. R., Nauman, J., Zisko, N., Skjellegrind, H. K., Bosnes, I., Bergh, S., Stensvold, D., Selbæk, G., & Wisløff, U. (2019). Temporal changes in cardiorespiratory fitness and risk of dementia incidence and mortality: A population-based prospective cohort study. The Lancet. Public Health, 4(11), e565-e574. https://doi.org/10.1016/S2468-2667(19)30183-5

US Department of Health & Human Services Centers for Disease Control (CDC) 200 Independence Avenue. (1996). Physical activity and health. A report of the Surgeon General Executive Summary: (305342003-001) [Dataset]. https://doi.org/10.1037/e305342003-001

Van Ryckeghem, L., Keytsman, C., De Brandt, J., Verboven, K., Verbaanderd, E., Marinus, N., Franssen, W. M. A., Frederix, I., Bakelants, E., Petit, T., Jogani, S., Stroobants, S., Dendale, P., Bito, V., Verwerft, J., & Hansen, D. (2022). Impact of continuous vs. Interval training on oxygen extraction and cardiac function during exercise in type 2 diabetes mellitus. European Journal of Applied Physiology, 122(4), 875-887. https://doi.org/10.1007/s00421-022-04884-9

Yamabe, H., Itho, K., Yasaka, Y., & Yokoyama, M. (1997). Clinical application of cardiac output during ramp exercise calculated using the Fick equation-Comparison with the 2-stage bicycle ergometer exercise protocol in the supine position. Japanese Circulation Journal, 61(6), 488-494. https://doi.org/10.1253/jcj.61.488

Zhao, M., Veeranki, S. P., Li, S., Steffen, L. M., & Xi, B. (2019). Beneficial associations of low and large doses of leisure time physical activity with all-cause, cardiovascular disease and cancer mortality: A national cohort study of 88,140 US adults. British Journal of Sports Medicine, 53(22), 1405-1411. https://doi.org/10.1136/bjsports-2018-099254

Similar Articles

You may also start an advanced similarity search for this article.