Association between heart rate variability and cardiorespiratory fitness in individuals with type 2 diabetes mellitus A cross-sectional study

Main Article Content

Saima Zaki
https://orcid.org/0000-0002-4520-992X
Farhan Alam
Mohammad Faizan
https://orcid.org/0009-0008-0887-0998
Saurabh Sharma
Irshad Husain Naqvi

Abstract

Background: Type 2 Diabetes Mellitus (T2DM) is associated with cardiovascular risk, which is partly due to autonomic dysfunction and decreased cardiorespiratory fitness. This study examines the relationship between heart rate variability (HRV) and maximal oxygen uptake (VO2max) in T2DM patients to understand their interconnected impacts on autonomic and aerobic functions. Methods: In a cross-sectional study, 77 T2DM patients underwent HRV and VO2max assessments using standard protocols. HRV metrics were analysed in conjunction with VO2max, measured through direct breath-by-breath analysis. Pearson's correlation coefficient was used to investigate the relationships between HRV indices and VO2max. Results: VO2max showed strong positive correlations with RMSSD (r = 0.89, p < .001), HF (r = 0.54, p < .001), and pNN50% (r = 0.52, p < .001), indicating higher parasympathetic activity with improved cardiorespiratory fitness. Negative correlations with LF (r = -0.60, p < .001) and the LF/HF ratio (r = -0.39, p < .001) suggested that better fitness levels lead to sympathetic withdrawal and a more favourable autonomic balance. Moderate positive correlations with SDNN (r = 0.46, p < .001) and TP (r = 0.58, p < .001) further suggested that overall autonomic modulation is enhanced with increased cardiorespiratory fitness. Conclusion: This study substantiates a significant correlation between HRV and VO2max in individuals with T2DM, highlighting the intricate relationship between autonomic function and aerobic capacity. These findings suggest that enhancing cardiorespiratory fitness may improve autonomic balance, offering potential avenues for mitigating cardiovascular risk in the T2DM population.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zaki, S., Alam, F., Faizan, M., Sharma, S., & Naqvi, I. H. (2024). Association between heart rate variability and cardiorespiratory fitness in individuals with type 2 diabetes mellitus: A cross-sectional study. Journal of Human Sport and Exercise , 19(3), 779-791. https://doi.org/10.55860/eazehg56
Section
Sport Medicine, Nutrition & Health
Author Biographies

Saima Zaki, Jamia Millia Islamia

Centre for Physiotherapy and Rehabilitation Sciences.

Farhan Alam, Jamia Millia Islamia University

Centre for Physiotherapy and Rehabilitation Sciences.

Mohammad Faizan, All India Institute of Medical Science

Trauma Centre.

Saurabh Sharma, Jamia Millia Islamia University

Centre for Physiotherapy and Rehabilitation Sciences.

Irshad Husain Naqvi, Jamia Millia Islamia University

Dr. M. A. Ansari Health Centre.

How to Cite

Zaki, S., Alam, F., Faizan, M., Sharma, S., & Naqvi, I. H. (2024). Association between heart rate variability and cardiorespiratory fitness in individuals with type 2 diabetes mellitus: A cross-sectional study. Journal of Human Sport and Exercise , 19(3), 779-791. https://doi.org/10.55860/eazehg56

References

Akoglu, H. (2018). User's guide to correlation coefficients. Turk J Emerg Med, 18(3), 91-93. https://doi.org/10.1016/j.tjem.2018.08.001

Ashcroft, R. E. (2008). The declaration of Helsinki. The Oxford textbook of clinical research ethics, 141-148. https://doi.org/10.1093/oso/9780195168655.003.0014

Beltz, N. M., Gibson, A. L., Janot, J. M., Kravitz, L., Mermier, C. M., & Dalleck, L. C. (2016). Graded Exercise Testing Protocols for the Determination of VO(2)max: Historical Perspectives, Progress, and Future Considerations. J Sports Med (Hindawi Publ Corp), 2016, 3968393. https://doi.org/10.1155/2016/3968393

Benichou, T., Pereira, B., Mermillod, M., Tauveron, I., Pfabigan, D., Maqdasy, S., & Dutheil, F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PloS one, 13(4), e0195166. https://doi.org/10.1371/journal.pone.0195166

Bhati, P., & Hussain, M. E. (2021). Leisure-Time Physical Activity and Glycemic Control Independently Predicts Cardiac Autonomic Neuropathy in Type 2 Diabetes Mellitus. J Phys Act Health, 18(11), 1393-1403. https://doi.org/10.1123/jpah.2020-0194

Cabral, D. A. R., da Costa, K. G., Tavares, V. D. d. O., Rêgo, M. L. d. M., Faro, H. K. C., & Fontes, E. B. (2019). Cardiorespiratory fitness predicts greater vagal autonomic activity in drug users under stress. Substance Abuse: Research and Treatment, 13. https://doi.org/10.1177/1178221819862283

Cai, L., Gonzales, T., Wheeler, E., Kerrison, N. D., Day, F. R., Langenberg, C., Perry, J. R. B., Brage, S., & Wareham, N. J. (2023). Causal associations between cardiorespiratory fitness and type 2 diabetes. Nature Communications, 14(1), 3904. https://doi.org/10.1038/s41467-023-38234-w

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press. https://doi.org/10.4324/9780203771587

Cuschieri, S. (2019). The STROBE guidelines. Saudi J Anaesth, 13(Suppl 1), S31-s34. https://doi.org/10.4103/sja.SJA_543_18

Daniela, M., Catalina, L., Ilie, O., Paula, M., Daniel-Andrei, I., & Ioana, B. (2022). Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants (Basel), 11(2). https://doi.org/10.3390/antiox11020350

Ferguson, B. (2014). ACSM's Guidelines for Exercise Testing and Prescription 9th Ed. 2014. In J Can Chiropr Assoc (Vol. 58, pp. 328). © jcca 2014.

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci, 21(17). https://doi.org/10.3390/ijms21176275

Gim, M. N., & Choi, J. H. (2016). The effects of weekly exercise time on VO2max and resting metabolic rate in normal adults. J Phys Ther Sci, 28(4), 1359-1363. https://doi.org/10.1589/jpts.28.1359

Gonzales, T. I., Westgate, K., Strain, T., Hollidge, S., Jeon, J., Christensen, D. L., Jensen, J., Wareham, N. J., & Brage, S. (2021). Cardiorespiratory fitness assessment using risk-stratified exercise testing and dose-response relationships with disease outcomes. Sci Rep, 11(1), 15315. https://doi.org/10.1038/s41598-021-94768-3

Granero-Gallegos, A., González-Quílez, A., Plews, D., & Carrasco-Poyatos, M. (2020). HRV-Based Training for Improving VO(2max) in Endurance Athletes. A Systematic Review with Meta-Analysis. Int J Environ Res Public Health, 17(21). https://doi.org/10.3390/ijerph17217999

Grant, C. C., Murray, C., Janse van Rensburg, D. C., & Fletcher, L. (2013). A comparison between heart rate and heart rate variability as indicators of cardiac health and fitness. Front Physiol, 4, 337. https://doi.org/10.3389/fphys.2013.00337

Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Eur Heart J, 17(3), 354-381.

Kadoglou, N. P., Iliadis, F., Angelopoulou, N., Sailer, N., Fotiadis, G., Voliotis, K., Vitta, I., Liapis, C. D., & Alevizos, M. (2009). Cardiorespiratory capacity is associated with favourable cardiovascular risk profile in patients with Type 2 diabetes. J Diabetes Complications, 23(3), 160-166. https://doi.org/10.1016/j.jdiacomp.2007.12.008

Larsen, F. J., Anderson, M., Ekblom, B., & Nyström, T. (2012). Cardiorespiratory fitness predicts insulin action and secretion in healthy individuals. Metabolism, 61(1), 12-16. https://doi.org/10.1016/j.metabol.2011.05.010

Leite, S. A., Monk, A. M., Upham, P. A., & Bergenstal, R. M. (2009). Low cardiorespiratory fitness in people at risk for type 2 diabetes: early marker for insulin resistance. Diabetol Metab Syndr, 1(1), 8. https://doi.org/10.1186/1758-5996-1-8

Loimaala, A., Huikuri, H. V., Kööbi, T., Rinne, M., Nenonen, A., & Vuori, I. (2003). Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes, 52(7), 1837-1842. https://doi.org/10.2337/diabetes.52.7.1837

Muntner, P., Shimbo, D., Carey, R. M., Charleston, J. B., Gaillard, T., Misra, S., Myers, M. G., Ogedegbe, G., Schwartz, J. E., & Townsend, R. R. (2019). Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension, 73(5), e35-e66. https://doi.org/10.1161/HYP.0000000000000087

Picard, M., Tauveron, I., Magdasy, S., Benichou, T., Bagheri, R., Ugbolue, U. C., Navel, V., & Dutheil, F. (2021). Effect of exercise training on heart rate variability in type 2 diabetes mellitus patients: A systematic review and meta-analysis. PloS one, 16(5), e0251863. https://doi.org/10.1371/journal.pone.0251863

Regensteiner, J. G., Sippel, J., McFARLING, E. T., Wolfel, E. E., & Hiatt, W. R. (1995). Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Medicine and science in sports and exercise, 27(6), 875-881. https://doi.org/10.1249/00005768-199506000-00012

Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Front Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258

Tadic, M., Grassi, G., & Cuspidi, C. (2021). Cardiorespiratory fitness in patients with type 2 diabetes: A missing piece of the puzzle. Heart Fail Rev, 26(2), 301-308. https://doi.org/10.1007/s10741-020-10015-3

Tang, Z.-H., Liu, J., Zeng, F., Li, Z., Yu, X., & Zhou, L. (2013). Comparison of prediction model for cardiovascular autonomic dysfunction using artificial neural network and logistic regression analysis. PloS one, 8(8), e70571. https://doi.org/10.1371/journal.pone.0070571

Trabulo, M., Mendes, M., Mesquita, A., & Seabra-Gomes, R. (1994). [Does the modified Bruce protocol induce physiological stress equal to that of the Bruce protocol?]. Rev Port Cardiol, 13(10), 753-760; 735-756.

Tuttolomondo, A., Del Cuore, A., La Malfa, A., Casuccio, A., Daidone, M., Maida, C. D., Di Raimondo, D., Di Chiara, T., Puleo, M. G., Norrito, R., Guercio, G., & Pinto, A. (2021). Assessment of heart rate variability (HRV) in subjects with type 2 diabetes mellitus with and without diabetic foot: correlations with endothelial dysfunction indices and markers of adipo-inflammatory dysfunction. Cardiovasc Diabetol, 20(1), 142. https://doi.org/10.1186/s12933-021-01337-z

Weir, C. B., & Jan, A. (2019). BMI classification percentile and cut off points.

Zaccardi, F., O'Donovan, G., Webb, D. R., Yates, T., Kurl, S., Khunti, K., Davies, M. J., & Laukkanen, J. A. (2015). Cardiorespiratory fitness and risk of type 2 diabetes mellitus: A 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis, 243(1), 131-137. https://doi.org/10.1016/j.atherosclerosis.2015.09.016

Zaki, S., Sharma, S., & Vats, H. (2023). Effectiveness of concurrent exercise training in people with type 2 diabetes: A systematic review and meta-analysis. Physiother Theory Pract, 1-22. https://doi.org/10.1080/09593985.2023.2225717

Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88-98. https://doi.org/10.1038/nrendo.2017.151

Similar Articles

You may also start an advanced similarity search for this article.