Creatine beyond muscle metabolism Changing constant of human body
Main Article Content
Abstract
Creatine plays a vital role in the normal metabolism of the central nervous system, heart, bones, and muscle tissues. It is one of the most extensively used dietary supplements worldwide. Creatine plays a critical role in energy metabolism, functioning as a source of high-energy phosphate groups that facilitate the fast recycling of ADP into ATP within cells, particularly during stressed states. The biosynthesis of creatine requires the essential substrates arginine and S-adenosylmethionine, which can influence the regulation of metabolism in the human body. Creatine acts as a negative regulator of its own synthesis and transport. The daily creatine dose can reach 0.4 g/kg of body weight. Although the absorption rate of high doses of creatine is 20-40%, they help enhance physical performance and athletic results. Despite the long history of creatine research and widespread use of creatine in sports, the precise molecular mechanisms governing its metabolism, excretion, and the functioning of the phosphocreatine energy buffer remain to be studied in detail. This review analyses the recent research on the impact of creatine supplements on health and athletic performance and the molecular mechanisms of its regulation within the human body.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by Journal of Human Sport and Exercise (JHSE). Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial — You may not use the material for commercial purposes.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
How to Cite
References
Abnous, K., & Storey, K. B. (2007) Regulation of skeletal muscle creatine kinase from a hibernating mammal. Arch. Biochem. Biophys, 467(1), 10-19. https://doi.org/10.1016/j.abb.2007.07.025
Abplanalp, J., Laczko, E., Philp, N. J., Neidhardt, J., Zuercher, J., Braun, P., Schorderet, D.F., Munier, F.L., Verrey, F., Berger, W., Camargo, S.M., Kloeckener-Gruissem, B. (2013). The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet, 22(16), 3218-26. https://doi.org/10.1093/hmg/ddt175
Armentano, M. J., Brenner, A. K., Hedman, T. L., Solomon, Z. T., Chavez, J., Kemper, G. B., Salzberg, D., Battafarano, D. F., Christie, D. S. (2007). The effect and safety of short-term creatine supplementation on performance of push-ups. Mil Med, 172(3), 312-7. https://doi.org/10.7205/MILMED.172.3.312
Balestrino, M. (2021). Role of Creatine in the Heart: Health and Disease. Nutrients, 13(4), 1215. https://doi.org/10.3390/nu13041215
Banfi, G., Colombini, A., Lombardi, G., Lubkowska, A. (2012). Metabolic markers in sports medicine. Adv Clin Chem, 56, 1-54. https://doi.org/10.1016/B978-0-12-394317-0.00015-7
Barcelos, R. P., Stefanello, S. T., Mauriz, J. L., Gonzalez-Gallego, J., Soares, F. A. (2016). Creatine and the Liver: Metabolism and Possible Interactions. Mini Rev Med Chem, 16(1), 12-8. https://doi.org/10.2174/1389557515666150722102613
Bessman, S.P., & Carpenter, C. L. (1985). The Creatine-Creatine Phosphate Energy Shuttle. Annu. Rev. Biochem, 54, 831-862. https://doi.org/10.1146/annurev.bi.54.070185.004151
Bhatt, M., Gauthier-Manuel, L., Lazzarin, E., Zerlotti, R., Ziegler, C., Bazzone, A., Stockner, T., Bossi, E. (2023). A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Front Physiol, 14, 1145973. https://doi.org/10.3389/fphys.2023.1145973
Bonilla, D. A., Kreider, R. B., Stout, J. R., Forero, D. A., Kerksick, C. M., Roberts, M. D., Rawson, E. S. (2021). Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients, 13(4), 1238. https://doi.org/10.3390/nu13041238
Bredahl, E. C., Eckerson, J. M., Tracy, S. M., McDonald, T. L., Drescher, K. M. (2021). The Role of Creatine in the Development and Activation of Immune Responses. Nutrients, 13(3), 751. https://doi.org/10.3390/nu13030751
Brosnan, J. T., da Silva, R. P., & Brosnan, M. E. (2011). The metabolic burden of creatine synthesis. Amino Acids, 40(5), 1325-31. https://doi.org/10.1007/s00726-011-0853-y
Brosnan, M. E., & Brosnan, J. T. (2016). The role of dietary creatine. Amino Acids, 48(8), 1785-91. https://doi.org/10.1007/s00726-016-2188-1
Burke, D. G., Smith-Palmer, T., Holt, L. E., Head, B., Chilibeck, P. D. (2001). The effect of 7 days of creatine supplementation on 24-hour urinary creatine excretion. J Strength Cond Res, 15(1), 59-62. https://doi.org/10.1519/00124278-200102000-00010
Butts, J., Jacobs, B., & Silvis, M. (2018). Creatine Use in Sports. Sports Health, 10(1), 31-34. https://doi.org/10.1177/1941738117737248
Candow, D. G., Forbes, S. C., Ostojic, S. M., Prokopidis, K., Stock, M. S., Harmon, K. K., Faulkner, P. (2023). "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med, 53(1), 49-65. https://doi.org/10.1007/s40279-023-01888-z
Carducci, C., Carducci, C., Santagata, S., Adriano, E., Artiola, C., Thellung, S., Gatta, E., Robello, M., Florio, T., Antonozzi, I., Leuzzi, V., Balestrino, M. (2012). In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism. BMC Neurosci, 13, 41. https://doi.org/10.1186/1471-2202-13-41
Chamberlin, M. E., Ubagai, T., Mudd, S. H., Thomas, J., Pao, V. Y., Nguyen, T. K., Levy, H. L., Greene, C., Freehauf, C., Chou, J. Y. (2000). Methionine adenosyltransferase I/III deficiency: novel mutations and clinical variations. Am J Hum Genet, 66(2), 347-55. https://doi.org/10.1086/302752
Cheillan, D., Joncquel-Chevalier, C. M., Briand, G., Salomons, G. S., Mention-Mulliez, K., Dobbelaere, D., … Vamecq, J. (2012). Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms. Orphanet J Rare Dis, 7, 96. https://doi.org/10.1186/1750-1172-7-96
Chen, C., Sun, Y., Liang, H., Yu, D., Hu, S. (2017). A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance. Biol Sport, 34(4), 323-330. https://doi.org/10.5114/biolsport.2017.69819
Chernozub, A., Potop, V., Korobeynikov, G., Timnea, O. C., Dubachinskiy, O., Ikkert, O., Briskin, Y., Boretsky, Y., Korobeynikova, L. (2020). Creatinine is a biochemical marker for assessing how untrained people adapt to fitness training loads. PeerJ, 8, e9137. https://doi.org/10.7717/peerj.9137
Ciarimboli, G., Lancaster, C. S., Schlatter, E., Franke, R. M., Sprowl, J. A., Pavenstädt, H., Massmann, V., Guckel, D., Mathijssen, R. H., Yang, W., Pui, C. H., Relling, M. V., Herrmann, E., Sparreboom, A. (2012). Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res, 18(4), 1101-8. https://doi.org/10.1158/1078-0432.CCR-11-2503
Cornish, S. M., Chilibeck, P. D., & Burke, D. G. (2006). The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players. J Sports Med Phys Fitness, 46(1), 90-8. PMID: 16596105.
Delecluse, C., Diels, R., & Goris, M. (2003). Effect of creatine supplementation on intermittent sprint running performance in highly trained athletes. J Strength Cond Res, 17(3), 446-54. https://doi.org/10.1519/1533-4287(2003)017<0446:EOCSOI>2.0.CO;2
Echegaray, M., & Rivera, M.A. (2001). Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence. Sports Med, 31(13), 919-34. https://doi.org/10.2165/00007256-200131130-00003
Fernández-Landa, J., Fernández-Lázaro, D., Calleja-González, J., Caballero-García, A., Córdova Martínez, A., León-Guereño, P., Mielgo-Ayuso, J. (2020). Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. Nutrients, 12(1), 193. https://doi.org/10.3390/nu12010193
Ferrada, E., Wiedmer, T., Wang, W. A., Frommelt, F., Steurer, B., Klimek, C., Lindinger, S., Osthushenrich, T., Garofoli, A., Brocchetti, S., Bradberry, S., Huang, J., MacNamara, A., Scarabottolo, L., Ecker, G.F., Malarstig, A., Superti-Furga, G. (2024). Experimental and Computational Analysis of Newly Identified Pathogenic Mutations in the Creatine Transporter SLC6A8. J Mol Biol, 436(2), 168383. https://doi.org/10.1016/j.jmb.2023.168383
Forbes, S. C., Chilibeck, P. D., & Candow, D. G. (2018). Creatine Supplementation During Resistance Training Does Not Lead to Greater Bone Mineral Density in Older Humans: A Brief Meta-Analysis. Front Nutr, 5, 27. https://doi.org/10.3389/fnut.2018.00027
Forbes, S. C., Ostojic, S. M., Souza-Junior, T. P., Candow, D. G. (2022). A High Dose of Creatine Combined with Resistance Training Appears to Be Required to Augment Indices of Bone Health in Older Adults. Ann Nutr Metab, 78(3), 183-186. https://doi.org/10.1159/000520967
Gerber, I., ap Gwynn, I., Alini, M., Wallimann, T. (2005). Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur Cell Mater, 10, 8-22. https://doi.org/10.22203/eCM.v010a02
Ginevičienė, V., Jakaitienė, A., Utkus, A., Hall, E. C. R, Semenova, E. A., Andryushchenko, L. B., Larin, A. K., Moreland, E., Generozov, E. V., Ahmetov, I. I. (2021). CKM Gene rs8111989 Polymorphism and Power Athlete Status. Genes (Basel), 12(10), 1499. https://doi.org/10.3390/genes12101499
Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K., Hultman, E. (1993). Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci (Lond), 84(5), 565-71. https://doi.org/10.1042/cs0840565
Guimarães-Ferreira, L. (2014). Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein (Sao Paulo), 12(1), 126-31. https://doi.org/10.1590/S1679-45082014RB2741
Haghighatfard, A., Ghaderi, A. H., Mostajabi, P., Kashfi, S. S., Mohabati Somehsarayee, H., Shahrani, M., Mehrasa, M., Haghighat, S., Farhadi, M., Momayez Sefat, M., Shiryazdi, A. A., Ezzati, N., Qazvini, M. G., Alizadenik, A., Moghadam, E. R. (2023). The first genome-wide association study of internet addiction; Revealed substantial shared risk factors with neurodevelopmental psychiatric disorders. Res Dev Disabil, 133, 104393. https://doi.org/10.1016/j.ridd.2022.104393
Hall, M., & Trojian, T. H. (2013). Creatine supplementation. Curr Sports Med Rep, 12(4), 240-4. https://doi.org/10.1249/JSR.0b013e31829cdff2
Harris, R. C, Soderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond), 83(3), 367-374. https://doi.org/10.1042/cs0830367
Hashchyshyn, V., Tymochko-Voloshyn, R., Paraniak, N., Vovkanych, L., Hlozhyk, I., Trach, V., Muzyka, F., Serafyn, Y., Prystupa, E., Boretsky, Y. (2022). Regeneration of Skeletal Muscle Fibers and Regulation of Myosatellitocytes Metabolism. Cytol. Genet, 56, 253-260. https://doi.org/10.3103/S0095452722030033
Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G., Greenhaff, P. L. (1996). Muscle creatine loading in men. J Appl Physiol, 81(1), 232-7. https://doi.org/10.1152/jappl.1996.81.1.232
Humm, A., Fritsche, E., Steinbacher, S., Huber, R. (1997). Crystal structure and mechanism of human L-arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis. EMBO J, 16(12), 3373-85. https://doi.org/10.1093/emboj/16.12.3373
Hurne, A. M., Chai, C. L., & Waring, P. (2000). Inactivation of rabbit muscle creatine kinase by reversible formation of an internal disulfide bond induced by the fungal toxin gliotoxin. J Biol Chem, 275(33), 25202-6. https://doi.org/10.1074/jbc.M002278200
Jensen, M., Müller, C., Schwedhelm, E., Arunachalam, P., Gelderblom, M., Magnus, T., Gerloff, C., Zeller, T., Choe, C. U. (2020). Homoarginine- and Creatine-Dependent Gene Regulation in Murine Brains with l-Arginine: Glycine Amidinotransferase Deficiency. Int J Mol Sci, 21(5), 1865. https://doi.org/10.3390/ijms21051865
Joncquel-Chevalier Curt, M., Voicu, P. M., Fontaine, M., Dessein, A. F., Porchet, N., Mention-Mulliez, K., Dobbelaere, D., Soto-Ares, G., Cheillan, D., Vamecq, J. (2015). Creatine biosynthesis and transport in health and disease. Biochimie, 119, 146-65. https://doi.org/10.1016/j.biochi.2015.10.022
Karakukcu, C., Kocer, D., Uzen, V., Saracoglu, H. (2024). Creatinine normalization approach to diluted urine samples screened by LC-MS/MS method. Int J Med Biochem, 7(2), 95-100. https://doi.org/10.14744/ijmb.2024.57441
Kim, J., Lee, J., Kim, S., Yoon, D., Kim, J., Sung, D. J. (2015). Role of creatine supplementation in exercise-induced muscle damage: a mini review. J Exerc Rehabil, 11, 244-250. https://doi.org/10.12965/jer.150237
Kreider, R. B. (2003). Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem, 244(1-2), 89-94. https://doi.org/10.1023/A:1022465203458
Kreider, R. B., & Stout, J. R. (2021). Creatine in Health and Disease. Nutrients, 13(2), 447. https://doi.org/10.3390/nu13020447
Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., Lopez, H. L. (2017). International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr, 14, 18. https://doi.org/10.1186/s12970-017-0173-z
Lamontagne-Lacasse, M., Nadon, R., & Goulet, E. D. B. (2011). Effect of creatine supplementation on jumping performance in elite volleyball players. Int J Sports Physiol Perform, 6(4), 525-33. https://doi.org/10.1123/ijspp.6.4.525
Lepist, E. I., Zhang, X., Hao, J., Huang, J., Kosaka, A., Birkus, G., Murray, B. P., Bannister, R., Cihlar, T., Huang, Y., Ray, A. S. (2014). Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int, 86(2), 350-7. https://doi.org/10.1038/ki.2014.66
Li, H., Thali, R. F., Smolak, C., Gong, F., Alzamora, R., Wallimann, T., Scholz, R., Pastor-Soler, N. M., Neumann, D., Hallows, K. R. (2010) Regulation of the creatine transporter by AMP-ACTIVATED protein kinase in kidney epithelial cells. Am J Physiol Renal Physiol, 299(1), 167-177. https://doi.org/10.1152/ajprenal.00162.2010
Lin, G., Liu, Y., & MacLeod, K. M. (2009). Regulation of muscle creatine kinase by phosphorylation in normal and diabetic hearts. Cell. Mol. Life Sci, 66, 135-144. https://doi.org/10.1007/s00018-008-8575-3
Lind, M. V., Lauritzen, L., Vestergaard, H., Hansen, T., Pedersen, O., Kristensen, M., Ross, A. B. (2018). One-carbon metabolism markers are associated with cardiometabolic risk factors. Nutr Metab Cardiovasc Dis, 28(4), 402-410. https://doi.org/10.1016/j.numecd.2018.01.005
Manjarrez-Montes de Oca, R., Farfán-González, F., Camarillo-Romero, S., Tlatempa-Sotelo, P., Francisco-Argüelles, C., Kormanowski, A., González-Gallego, J., Alvear-Ordenes, I. (2013). Effects of creatine supplementation in taekwondo practitioners. Nutr Hosp, 28(2), 391-9.
Mathialagan, S., Chung, G., Pye, K., Rodrigues, A. D., Varma, M. V. S., Brown, C. (2024). Significance of Organic Anion Transporter 2 and Organic Cation Transporter 2 in Creatinine Clearance: Mechanistic Evaluation Using Freshly Prepared Human Primary Renal Proximal Tubule Cells. J Pharmacol Exp Ther, 388(1), 201-208. https://doi.org/10.1124/jpet.123.001890
Mathialagan, S., Feng, B., Rodrigues, A. D., Varma, M. V. S. (2021). Drug-Drug Interactions Involving Renal OCT2/MATE Transporters: Clinical Risk Assessment May Require Endogenous Biomarker-Informed Approach. Clin Pharmacol Ther, 110(4), 855-859. https://doi.org/10.1002/cpt.2089
McConell, G. K., Shinewell, J., Stephens, T.J., Stathis, C. G., Canny, B. J., Snow, R. J. (2005). Creatine supplementation reduces muscle inosine monophosphate during endurance exercise in humans. Med Sci Sports Exerc, 37(12), 2054-2061. https://doi.org/10.1249/01.mss.0000179096.03129.a4
McGuire, D. M., Gross, M. D., Van Pilsum, J. F., Towle, H. C. (1984). Repression of rat kidney L-arginine: glycine amidinotransferase synthesis by creatine at a pretranslational level. J Biol Chem, 259(19), 12034-8. https://doi.org/10.1016/S0021-9258(20)71316-5
McMorris, T., Harris, R. C., Swain, J., Corbett, J., Collard, K., Dyson, R. J., Dye, L., Hodgson, C., Draper, N. (2006). Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology, 185, 93-103. https://doi.org/10.1007/s00213-005-0269-z
Mielgo-Ayuso, J., Calleja-Gonzalez, J., Marqués-Jiménez, D., Caballero-García, A., Córdova, A., Fernández-Lázaro, D. (2019). Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients, 11(4), 757. https://doi.org/10.3390/nu11040757
Miotto, P. M., & Holloway, G. P. (2016). In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport. Biochem J, 473(18), 2831-43. https://doi.org/10.1042/BCJ20160373
Montasell, M. C., Monge, P., Carmali, S., Dias Loiola, L. M., Andersen, D. G., Løvschall, K. B., Søgaard, A. B., Kristensen, M. M., Pütz, J. M., Zelikin, A. N. (2022). Chemical zymogens for the protein cysteinome. Nat Commun, 13(1), 4861. https://doi.org/10.1038/s41467-022-32609-1
Oosterwijk, M. M., den Braber, N., Bakker, S. J. L., Laverman, G. D. (2022). Urinary creatinine excretion is an indicator of physical performance and function. J Cachexia Sarcopenia Muscle, 13(2), 1431-1433. https://doi.org/10.1002/jcsm.12965
Ostojic, S. M. (2004). Creatine supplementation in young soccer players. Int J Sport Nutr Exerc Metab, 14(1), 95-103. https://doi.org/10.1123/ijsnem.14.1.95
Ostojic, S. M. (2022). Guanidinoacetic Acid as a Nutritional Adjuvant to Multiple Sclerosis Therapy. Front Hum Neurosci, 16, 871535. doi: 10.3389/fnhum.2022.871535. https://doi.org/10.3389/fnhum.2022.871535
Ostojic, S. M., & Ahmetovic, Z. (2008). Gastrointestinal distress after creatine supplementation in athletes: Are side effects dose dependent? Research in Sports Medicine, 16(1), 15-22. https://doi.org/10.1080/15438620701693280
Ostojic, S. M., Niess, B., Stojanovic, M., Obrenovic, M. (2013). Creatine metabolism and safety profiles after six-week oral guanidinoacetic acid administration in healthy humans. Int J Med Sci, 10(2), 141-7. https://doi.org/10.7150/ijms.5125
Peris-Moreno, D., Taillandier, D., & Polge C. (2020). MuRF1/TRIM63, Master Regulator of Muscle Mass. Int J Mol Sci, 21(18), 6663. https://doi.org/10.3390/ijms21186663
Peters, B. A., Hall, M. N., Liu, X., Parvez, F., Siddique, A. B., Shahriar, H., Uddin, M. N., Islam, T., Ilievski, V., Graziano, J. H., Gamble, M. V. (2015). Low-Dose Creatine Supplementation Lowers Plasma Guanidinoacetate, but Not Plasma Homocysteine, in a Double-Blind, Randomized, Placebo-Controlled Trial. J Nutr, 145(10), 2245-52. https://doi.org/10.3945/jn.115.216739
Pluim, B. M., Ferrauti, A., Broekhof, F., Deutekom, M., Gotzmann, A., Kuipers, H., Weber, K. (2006). The effects of creatine supplementation on selected factors of tennis specific training. Br J Sports Med, 40(6), 507-12. https://doi.org/10.1136/bjsm.2005.022558
Qin, W., Khuchua, Z., Boero, J., Payne, R. M., Strauss, A. W. (1999). Oxidative myocytes of heart and skeletal muscle express abundant sarcomeric mitochondrial creatine kinase. Histochem J, 31(6), 357-65. https://doi.org/10.1023/A:1003748108062
Radziejewska, A., Muzsik, A., Milagro, F. I., Martínez, J. A., Chmurzynska, A. (2020). One-Carbon Metabolism and Nonalcoholic Fatty Liver Disease: The Crosstalk between Nutrients, Microbiota, and Genetics. Lifestyle Genom, 13(2), 53-63. https://doi.org/10.1159/000504602
Reddy, S., Jones, A. D., Cross, C. E., Wong, P. S., Van Der Vliet, A. (2000). Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue. Biochem J, 347 Pt 3(Pt 3), 821-7. https://doi.org/10.1042/bj3470821
Saito, S., Cao, D. Y., Okuno, A., Li, X., Peng, Z., Kelel, M., Tsuji, N. M. (2022). Creatine supplementation enhances immunological function of neutrophils by increasing cellular adenosine triphosphate. Biosci Microbiota Food Health, 41(4), 185-194. https://doi.org/10.12938/bmfh.2022-018
Salomons, G. S., van Dooren, S. J., Verhoeven, N. M., Marsden, D., Schwartz, C., Cecil, K. M., DeGrauw, T. J., Jakobs, C. (2003). X-linked creatine transporter defect: an overview. J Inherit Metab Dis, 26(2-3), 309-18. https://doi.org/10.1023/A:1024405821638
Samra, M., & Abcar, A. C. (2012). False estimates of elevated creatinine. Perm J. Spring, 16(2), 51-2. https://doi.org/10.7812/tpp/11-121
Schlattner, U., Klaus, A., Ramirez Rios, S., Guzun, R., Kay, L., Tokarska-Schlattner, M. (2016). Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids, 48(8), 1751-74. https://doi.org/10.1007/s00726-016-2267-3
Schulze, A. (2003). Creatine deficiency syndromes. Mol Cell Biochem, 244(1-2), 143-50. https://doi.org/10.1023/A:1022443503883
Selhub, J. (1999). Homocysteine metabolism. Annu Rev Nutr, 19, 217-46. https://doi.org/10.1146/annurev.nutr.19.1.217
Sestili, P., Ambrogini, P., Barbieri, E., Sartin, S., Fimognari, C., Calcabrini, C., Diaz, A. R., Guescini, M., Polidori, E., Luchetti, F., Canonico, B., Lattanzi, D., Cuppini, R., Papa, S., Stocchi, V. (2016). New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation. Amino Acids, 48(8), 1897-911. https://doi.org/10.1007/s00726-015-2161-4
Shen, H., Liu, T., Morse, B. L., Zhao, Y., Zhang, Y., Qiu, X., Chen, C., Lewin, A. C., Wang, X. T., Liu, G., Christopher, L. J., Marathe, P., Lai, Y. (2015). Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression. Drug Metab Dispos, 43(7), 984-93. https://doi.org/10.1124/dmd.114.062364
Stockler-Ipsiroglu, S., & van Karnebeek, C. D. (2014). Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders. Semin Neurol, 34(3), 350-6. https://doi.org/10.1055/s-0034-1386772
Tang, F. C., Chan, C. C., & Kuo, P. L. (2014). Contribution of creatine to protein homeostasis in athletes after endurance and sprint running. Eur J Nutr, 53(1), 61-71. https://doi.org/10.1007/s00394-013-0498-6
Theodorou, A. S., Havenetidis, K., Zanker, C. L., O'Hara, J. P., King, R. F., Hood, C., Paradisis, G., Cooke, C. B. (2005). Effects of acute creatine loading with or without carbohydrate on repeated bouts of maximal swimming in high-performance swimmers. J Strength Cond Res, 19(2), 265-9. https://doi.org/10.1519/15314.1
Tormanen, C. D. (1990). Comparison of the properties of purified mitochondrial and cytosolic rat kidney transamidinase. Int J Biochem, 22(11), 1243-50. https://doi.org/10.1016/0020-711X(90)90305-M
Tropak, M. B., Tkachyova, I., Gu, R., Lee, A., Schulze, A. (2023). Evidence of an intracellular creatine-sensing mechanism that modulates creatine biosynthesis via AGAT expression in human HAP1 cells. Sci Rep, 13(1), 22392. https://doi.org/10.1038/s41598-023-49860-1
Twycross-Lewis, R., Kilduff, L.P., Wang, G., Pitsiladis, Y.P. (2016). The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects. Amino Acids, 48(8), 1843-55. https://doi.org/10.1007/s00726-016-2237-9
Ulloque-Badaracco, J. R., Hernandez-Bustamante, E. A., Alarcon-Braga, E.A., Al-Kassab-Córdova, A., Cabrera-Guzmán, J. C., Herrera-Añazco, P., Benites-Zapata, V.A. (2023). Vitamin B12, folate, and homocysteine in metabolic syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne), 14, 1221259. https://doi.org/10.3389/fendo.2023.1221259
Wallimann, T., & Harris, R. (2016). Creatine: a miserable life without it. Amino Acids, 48(8), 1739-50. https://doi.org/10.1007/s00726-016-2297-x
Wallimann, T., Tokarska-Schlattner, M., & Schlattner, U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino Acids, 40(5), 1271-96. https://doi.org/10.1007/s00726-011-0877-3
Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J, 281 (Pt1) (Pt 1), 21-40. https://doi.org/10.1042/bj2810021
Walsh, B., Tonkonogi, M., Söderlund, K., Hultman, E., Saks, V., Sahlin, K. (2001). The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. J Physiol, 537(Pt3), 971-8. https://doi.org/10.1111/j.1469-7793.2001.00971.x
Watanabe, A., Kato, N., Kato, T. (2002). Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res, 42(4), 279-85. https://doi.org/10.1016/S0168-0102(02)00007-X
Wax, B., Kerksick, C. M., Jagim, A.R., Mayo, J. J., Lyons, B.C., Kreider, R. B. (2021). Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients, 13(6), 1915. https://doi.org/10.3390/nu13061915
Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiol Rev, 80(3), 1107-213. https://doi.org/10.1152/physrev.2000.80.3.1107
Wyss, M., & Schulze, A. (2002). Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience, 112(2), 243-60. https://doi.org/10.1016/S0306-4522(02)00088-X
Wyss, M., Braissant, O., Pischel, I., Salomons, G. S., Schulze, A., Stockler, S., Wallimann, T. (2007). Creatine and creatine kinase in health and disease--a bright future ahead? Subcell Biochem, 46, 309-34. https://doi.org/10.1007/978-1-4020-6486-9_16
Yan, H., & Bu, P. (2024). TAMC-derived creatine sustains glioblastoma growth. Cell Metab, 36(1), 1-3. https://doi.org/10.1016/j.cmet.2023.12.012
Zakalskiy, A. E., Stasyuk, N. Y., Zakalska, O. M., Boretsky, Y. R., Gonchar, M. V. (2020). Overexpression and one-step renaturation-purification of the tagged creatinine deiminase of Corynebacterium glutamicum in Escherichia coli cells. Cell Biol Int, 44(5), 1204-1211. https://doi.org/10.1002/cbin.11320
Zhao, T. J., Yan, Y. B., Liu, Y., Zhou, H. M. (2007). The generation of the oxidized form of creatine kinase is a negative regulation on muscle creatine kinase. J Biol Chem, 282(16), 12022-9. https://doi.org/10.1074/jbc.M610363200
Zhu, L., Tang, Y., Li, X. Y., Kerk, S. A., Lyssiotis, C. A., Feng, W., Sun, X., Hespe, G. E., Wang, Z., Stemmler, M. P., Brabletz, S., Brabletz, T., Keller, E. T., Ma, J., Cho, J. S., Yang, J., Weiss, A. (2023). Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling. SJ.EMBO J, 42(7), e111148. https://doi.org/10.15252/embj.2022111148