Heart rate variability-guided aerobic training without moderate-intensity enhances submaximal and maximal aerobic power with less training load

Main Article Content

Hirotsugu Morinaga
https://orcid.org/0009-0009-4187-2669
Yohei Takai
https://orcid.org/0000-0002-0142-0993

Abstract

This study aims to clarify the effects of heart rate variability (HRV)-guided aerobic training on submaximal and maximal aerobic power. Twelve active men participated in a 5-week intervention and were divided into two groups: a block periodization training group (BP, n = 6) and a HRV-guided training group (HRV-G, n = 6). All participants underwent the same aerobic training during week one. In weeks 2–5, the training load for the HRV-G was adjusted based on the HRV of an individual on waking. The BP underwent 2 weeks of overload training followed by 2 weeks of taper training. To determine the submaximal and maximal aerobic powers, an incremental load test was performed at baseline and once a week. The internal load during the training sessions was derived from the heart rate. The monotony and strain were calculated from the internal load. TRIMP and the strain were lower in the HRV-G than BP. The HRV-G had a greater relative distribution of time spent at low-intensity and a lower relative distribution of time spent at high-intensity than BP. The change in the maximal and submaximal aerobic power was greater in the HRV than in BP. The current findings indicate that combined low- and high-intensity HRV-guided training enhance increases the submaximal and maximal aerobic power, regardless lower training load than BP.

Downloads

Download data is not yet available.

Article Details

How to Cite
Morinaga, H., & Takai, Y. (2024). Heart rate variability-guided aerobic training without moderate-intensity enhances submaximal and maximal aerobic power with less training load. Journal of Human Sport and Exercise , 20(1), 366-380. https://doi.org/10.55860/6mjpk208
Section
Sport Medicine, Nutrition & Health

How to Cite

Morinaga, H., & Takai, Y. (2024). Heart rate variability-guided aerobic training without moderate-intensity enhances submaximal and maximal aerobic power with less training load. Journal of Human Sport and Exercise , 20(1), 366-380. https://doi.org/10.55860/6mjpk208

Funding data

References

Aubry, A., Hausswirth, C., Louis, J., Coutts, A. J., & Y, L. E. M. (2014). Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc, 46(9), 1769-1777. https://doi.org/10.1249/MSS.0000000000000301

Borg, G. A. (1973). Perceived exertion: a note on "history" and methods. Med Sci Sports, 5, 90-93. https://doi.org/10.1249/00005768-197300520-00017

Bosquet, L., Montpetit, J., Arvisais, D., & Mujika, I. (2007). Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc, 39(8), 1358-1365. https://doi.org/10.1249/mss.0b013e31806010e0

Boullosa, D. A., Abreu, L., Nakamura, F. Y., Muñoz, V. E., Domínguez, E., & Leicht, A. S. (2013). Cardiac autonomic adaptations in elite Spanish soccer players during preseason. International Journal of Sports Physiology and Performance, 8(4), 400-409. https://doi.org/10.1123/ijspp.8.4.400

Buchheit, M., Chivot, A., Parouty, J., Mercier, D., Al Haddad, H., Laursen, P., & Ahmaidi, S. (2010). Monitoring endurance running performance using cardiac parasympathetic function. European journal of applied physiology, 108, 1153-1167. https://doi.org/10.1007/s00421-009-1317-x

Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., Coumel, P., Fallen, E. L., Kennedy, H. L., & Kleiger, R. E. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043-1065.

Carrasco-Poyatos, M., González-Quílez, A., Altini, M., & Granero-Gallegos, A. (2022). Heart rate variability-guided training in professional runners: Effects on performance and vagal modulation. Physiology & Behavior, 244, 113654. https://doi.org/10.1016/j.physbeh.2021.113654

Chwalbinska-Moneta, J., Kaciuba-Uscilko, H., Krysztofiak, H., Ziemba, A., Krzeminski, K., Kruk, B., & Nazar, K. (1998). Relationship between EMG, blood lactate, and plasma catecholamine thresholds during graded exercise in men. Journal of physiology and pharmacology, 49(3).

da Silva, D. F., Ferraro, Z. M., Adamo, K. B., & Machado, F. A. (2019). Endurance running training individually guided by HRV in untrained women. The Journal of Strength & Conditioning Research, 33(3), 736-746. https://doi.org/10.1519/JSC.0000000000002001

Da Silva, D. F., Verri, S. M., Nakamura, F. Y., & Machado, F. A. (2014). Longitudinal changes in cardiac autonomic function and aerobic fitness indices in endurance runners: A case study with a high-level team. European Journal of Sport Science, 14(5), 443-451. https://doi.org/10.1080/17461391.2013.832802

De Pauw, K., Roelands, B., Cheung, S. S., De Geus, B., Rietjens, G., & Meeusen, R. (2013). Guidelines to classify subject groups in sport-science research. International Journal of Sports Physiology and Performance, 8(2), 111-122. https://doi.org/10.1123/ijspp.8.2.111

DeBlauw, J., Crawford, D., Stein, J., Lewis, A., & Heinrich, K. (2021). Association of heart rate variability and simulated cycling time trial performance. Journal of Science and Cycling, 10(3), 25-33. https://doi.org/10.28985/1221.jsc.09

Elkin, L. A., Kay, M., Higgins, J. J., & Wobbrock, J. O. (2021). An aligned rank transform procedure for multifactor contrast tests. The 34th annual ACM symposium on user interface software and technology. https://doi.org/10.1145/3472749.3474784

Esteve-Lanao, J., Foster, C., Seiler, S., & Lucia, A. (2007). Impact of training intensity distribution on performance in endurance athletes. The Journal of Strength & Conditioning Research, 21(3), 943-949. https://doi.org/10.1519/00124278-200708000-00048

Figueiredo, D. H., Figueiredo, D. H., Moreina, A., Gonçalves, H. R., & Stanganelli, L. C. R. (2019). Effect of Overload and Tapering on Individual Heart Rate Variability, Stress Tolerance, and Intermittent Running Performance in Soccer Players During a Preseason. J Strength Cond Res, 33, 1222-1231. https://doi.org/10.1519/JSC.0000000000003127

Foster, C. (1998). Monitoring training in athletes with reference to overtraining syndrome. Medicine and science in sports and exercise, 30(7), 1164-1168. https://doi.org/10.1097/00005768-199807000-00023

Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Med, 31(10), 725-741. https://doi.org/10.2165/00007256-200131100-00003

Halson, S. L., Bridge, M. W., Meeusen, R., Busschaert, B., Gleeson, M., Jones, D. A., & Jeukendrup, A. E. (2002). Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol (1985), 93(3), 947-956. https://doi.org/10.1152/japplphysiol.01164.2001

Hautala, A. J., Makikallio, T. H., Kiviniemi, A., Laukkanen, R. T., Nissila, S., Huikuri, H. V., & Tulppo, M. P. (2003). Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. American Journal of Physiology-Heart and Circulatory Physiology, 285(4), H1747-H1752. https://doi.org/10.1152/ajpheart.00202.2003

Issurin, V. B. (2010). New horizons for the methodology and physiology of training periodization. Sports medicine, 40, 189-206. https://doi.org/10.2165/11319770-000000000-00000

Javaloyes, A., Sarabia, J. M., Lamberts, R. P., & Moya-Ramon, M. (2019). Training prescription guided by heart-rate variability in cycling. International Journal of Sports Physiology and Performance, 14(1), 23-32. https://doi.org/10.1123/ijspp.2018-0122

Javaloyes, A., Sarabia, J. M., Lamberts, R. P., Plews, D., & Moya-Ramon, M. (2020). Training prescription guided by heart rate variability vs. block periodization in well-trained cyclists. The Journal of Strength & Conditioning Research, 34(6), 1511-1518. https://doi.org/10.1519/JSC.0000000000003337

Kiviniemi, A. M., Hautala, A. J., Kinnunen, H., Nissilä, J., Virtanen, P., Karjalainen, J., & Tulppo, M. P. (2010). Daily exercise prescription on the basis of HR variability among men and women. Medicine and science in sports and exercise, 42(7), 1355-1363. https://doi.org/10.1249/MSS.0b013e3181cd5f39

Kiviniemi, A. M., Hautala, A. J., Kinnunen, H., & Tulppo, M. P. (2007). Endurance training guided individually by daily heart rate variability measurements. European journal of applied physiology, 101(6), 743-751. https://doi.org/10.1007/s00421-007-0552-2

Le Meur, Y., Pichon, A., Schaal, K., Schmitt, L., Louis, J., Gueneron, J., Vidal, P. P., & Hausswirth, C. (2013). Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med Sci Sports Exerc, 45(11), 2061-2071. https://doi.org/10.1249/MSS.0b013e3182980125

Manzi, V., Iellamo, F., Impellizzeri, F., D'OTTAVIO, S., & Castagna, C. (2009). Relation between individualized training impulses and performance in distance runners. Medicine & Science in Sports & Exercise, 41(11), 2090-2096. https://doi.org/10.1249/MSS.0b013e3181a6a959

Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., Rietjens, G., Steinacker, J., Urhausen, A., European College of Sport, S., & American College of Sports, M. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc, 45(1), 186-205. https://doi.org/10.1249/MSS.0b013e318279a10a

Melanson, E. L., & Freedson, P. S. (2001). The effect of endurance training on resting heart rate variability in sedentary adult males. European journal of applied physiology, 85, 442-449. https://doi.org/10.1007/s004210100479

Morinaga, H., & Takai, Y. (2024). Association of change in aerobic power with training load in block periodization. Gazzetta Medica Italiana-Archivio per le Scienze Mediche, 183(4), 310-320. https://doi.org/10.23736/S0393-3660.23.05184-7

Neal, C. M., Hunter, A. M., Brennan, L., O'Sullivan, A., Hamilton, D. L., DeVito, G., & Galloway, S. D. (2013). Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Journal of applied physiology. https://doi.org/10.1152/japplphysiol.00652.2012

Nummela, A., Hynynen, E., Kaikkonen, P., & Rusko, H. (2009). Endurance performance and nocturnal HRV indices. International journal of sports medicine, 154-159. https://doi.org/10.1055/s-0029-1243221

Nuuttila, O.-P., Nikander, A., Polomoshnov, D., Laukkanen, J. A., & Häkkinen, K. (2017). Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. International journal of sports medicine, 38(12), 909-920. https://doi.org/10.1055/s-0043-115122

Plews, D. J., Laursen, P. B., Kilding, A. E., & Buchheit, M. (2012). Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. European journal of applied physiology, 112(11), 3729-3741. https://doi.org/10.1007/s00421-012-2354-4

Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system: studies in man on the interrelation between baroreceptor mechanisms and exercise. Circulation Research, 19(2), 400-411. https://doi.org/10.1161/01.RES.19.2.400

Schmitt, L., Willis, S. J., Fardel, A., Coulmy, N., & Millet, G. P. (2018). Live high-train low guided by daily heart rate variability in elite Nordic-skiers. European journal of applied physiology, 118, 419-428. https://doi.org/10.1007/s00421-017-3784-9

Seiler, S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5(3), 276-291. https://doi.org/10.1123/ijspp.5.3.276

Seiler, S., Haugen, O., & Kuffel, E. (2007). Autonomic recovery after exercise in trained athletes: intensity and duration effects. Medicine and science in sports and exercise, 39(8), 1366. https://doi.org/10.1249/mss.0b013e318060f17d

Skinner, J. S., Jaskólski, A., Jaskólska, A., Krasnoff, J., Gagnon, J., Leon, A. S., Rao, D., Wilmore, J. H., & Bouchard, C. (2001). Age, sex, race, initial fitness, and response to training: the HERITAGE Family Study. Journal of applied physiology. https://doi.org/10.1152/jappl.2001.90.5.1770

Stöggl, T. L., & Sperlich, B. (2015). The training intensity distribution among well-trained and elite endurance athletes. Frontiers in Physiology, 6, 295. https://doi.org/10.3389/fphys.2015.00295

Taylor, R. J., Sanders, D., Myers, T., Abt, G., Taylor, C. A., & Akubat, I. (2018). The dose-response relationship between training load and aerobic fitness in academy rugby union players. International Journal of Sports Physiology and Performance, 13(2), 163-169. https://doi.org/10.1123/ijspp.2017-0121

Thomas, L., & Busso, T. (2005). A theoretical study of taper characteristics to optimize performance. Med Sci Sports Exerc, 37(9), 1615-1621. https://doi.org/10.1249/01.mss.0000177461.94156.4b

Vandewalle, H., Peres, G., & Monod, H. (1987). Standard Anaerobic Exercise Tests. Sports medicine, 4, 268-289. https://doi.org/10.2165/00007256-198704040-00004

Vesterinen, V., Nummela, A., Heikura, I., Laine, T., Hynynen, E., Botella, J., & Häkkinen, K. (2016). Individual endurance training prescription with heart rate variability. Medicine and science in sports and exercise, 48(7). https://doi.org/10.1249/MSS.0000000000000910

Wenger, H. A., & Bell, G. J. (1986). The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports medicine, 3, 346-356. https://doi.org/10.2165/00007256-198603050-00004

Wobbrock, J. O., Findlater, L., Gergle, D., & Higgins, J. J. (2011). The aligned rank transform for nonparametric factorial analyses using only anova procedures. Proceedings of the SIGCHI conference on human factors in computing systems. https://doi.org/10.1145/1978942.1978963

Similar Articles

You may also start an advanced similarity search for this article.