Comparative analysis of muscular fitness tests and their correlation with anthropometric data in children aged 9-12

Main Article Content

Petr Schlegel
Adam Křehký

Abstract

Physical fitness, encompassing cardiorespiratory endurance, muscular strength, and body composition, is vital for health and well-being. Muscular fitness, in particular, is associated with decreased risks of depression, cognitive disorders, and metabolic disease. Despite various available tests to measure muscle strength, there is no consensus on the most effective test or combination of tests, and direct comparisons are scarce. This study evaluated the muscular fitness of 484 children aged 9-12 years (225 girls and 259 boys) through multiple tests, including standing broad jump (SBJ), push-ups, bent-arm hang (BAH), sit-ups, handgrip strength, back-leg dynamometry (back-leg), and medicine ball throw (MBT), to assess their correlation with anthropometric data. Our correlation analysis revealed strong relationships (r > 0.6) between handgrip and MBT, handgrip and back-leg, and MBT and back-leg. However, most correlations were weak or very weak, indicating that different aspects of muscle strength, as assessed by these tests, are largely independent and cannot be substituted for one another. This underscores the necessity of employing a variety of tests in the comprehensive assessment of muscular fitness, taking into account the unique predictive value of each.

Downloads

Download data is not yet available.

Article Details

How to Cite
Schlegel, P., & Křehký, A. (2024). Comparative analysis of muscular fitness tests and their correlation with anthropometric data in children aged 9-12. Journal of Human Sport and Exercise , 19(3), 737-747. https://doi.org/10.55860/zrme6w41
Section
Physical Education / Children & Exercise
Author Biographies

Petr Schlegel, University of Hradec Kralove

Department of Physical Education and Sports. Faculty of Education.

Adam Křehký, University of Hradec Kralove

Department of Physical Education and Sports. Faculty of Education.

How to Cite

Schlegel, P., & Křehký, A. (2024). Comparative analysis of muscular fitness tests and their correlation with anthropometric data in children aged 9-12. Journal of Human Sport and Exercise , 19(3), 737-747. https://doi.org/10.55860/zrme6w41

References

Abbott, M. L. (2011). Understanding Educational Statistics Using Microsoft Excel and SPSS (1. vyd.). Wiley.

Baumgartner, T. A., Oh, S., Chung, H., & Hales, D. (2002). Objectivity, Reliability, and Validity for a Revised Push-Up Test Protocol. Measurement in Physical Education and Exercise Science, 6(4), 225-242. https://doi.org/10.1207/S15327841MPEE0604_2

Beunen, G., & Thomis, M. (2000). Muscular Strength Development in Children and Adolescents. Pediatric Exercise Science, 12, 174-197. https://doi.org/10.1123/pes.12.2.174

Castro-Piñero, J., González-Montesinos, J. L., Mora, J., Keating, X. D., Girela-Rejón, M. J., Sjöström, M., & Ruiz, J. R. (2009). Percentile values for muscular strength field tests in children aged 6 to 17 years: Influence of weight status. Journal of Strength and Conditioning Research, 23(8), 2295-2310. https://doi.org/10.1519/JSC.0b013e3181b8d5c1

Cooper institute. (2010). Fitnessgram & Activitygram Test Administration Manual-Updated 4th Edition (4 edition). Human Kinetics.

De Witt, J. K., English, K. L., Crowell, J. B., Kalogera, K. L., Guilliams, M. E., Nieschwitz, B. E., Hanson, A. M., & Ploutz-Snyder, L. L. (2018). Isometric Midthigh Pull Reliability and Relationship to Deadlift One Repetition Maximum. The Journal of Strength & Conditioning Research, 32(2), 528. https://doi.org/10.1519/JSC.0000000000001605

de Miguel-Etayo, P., Gracia-Marco, L., Ortega, F. B., Intemann, T., Foraita, R., Lissner, L., Oja, L., Barba, G., Michels, N., Tornaritis, M., Molnár, D., Pitsiladis, Y., Ahrens, W., Moreno, L. A., & IDEFICS consortium. (2014). Physical fitness reference standards in European children: The IDEFICS study. International Journal of Obesity (2005), 38 Suppl 2, S57-66. https://doi.org/10.1038/ijo.2014.136

Dooley, F. L., Kaster, T., Fitzgerald, J. S., Walch, T. J., Annandale, M., Ferrar, K., Lang, J. J., Smith, J. J., & Tomkinson, G. R. (2020). A Systematic Analysis of Temporal Trends in the Handgrip Strength of 2,216,320 Children and Adolescents Between 1967 and 2017. Sports Medicine (Auckland, N.Z.), 50(6), 1129-1144. https://doi.org/10.1007/s40279-020-01265-0

Đurić, S., Sember, V., Starc, G., Sorić, M., Kovač, M., & Jurak, G. (2021). Secular trends in muscular fitness from 1983 to 2014 among Slovenian children and adolescents. Scandinavian Journal of Medicine & Science in Sports, 31(9), 1853-1861. https://doi.org/10.1111/sms.13981

Ervin, R. B., Fryar, C. D., Wang, C.-Y., Miller, I. M., & Ogden, C. L. (2014). Strength and Body Weight in US Children and Adolescents. Pediatrics, 134(3), e782-e789. https://doi.org/10.1542/peds.2014-0794

Esbjörnsson, M. E., Dahlström, M. S., Gierup, J. W., & Jansson, E. C. (2021). Muscle fiber size in healthy children and adults in relation to sex and fiber types. Muscle & Nerve, 63(4), 586-592. https://doi.org/10.1002/mus.27151

Faigenbaum, A. D., Milliken, L. A., & Westcott, W. L. (2003). Maximal Strength Testing in Healthy Children. The Journal of Strength & Conditioning Research, 17(1), 162. https://doi.org/10.1519/1533-4287(2003)017<0162:MSTIHC>2.0.CO;2

Ferland, P.-M., Pollock, A., Swope, R., Ryan, M., Reeder, M., Heumann, K., & Comtois, A. S. (2020). The Relationship Between Physical Characteristics and Maximal Strength in Men Practicing the Back Squat, the Bench Press and the Deadlift. International Journal of Exercise Science, 13(4), 281-297.

Fraser, B. J., Rollo, S., Sampson, M., Magnussen, C. G., Lang, J. J., Tremblay, M. S., & Tomkinson, G. R. (2021). Health-Related Criterion-Referenced Cut-Points for Musculoskeletal Fitness Among Youth: A Systematic Review. Sports Medicine (Auckland, N.Z.), 51(12), 2629-2646. https://doi.org/10.1007/s40279-021-01524-8

Fühner, T., Kliegl, R., Arntz, F., Kriemler, S., & Granacher, U. (2021). An Update on Secular Trends in Physical Fitness of Children and Adolescents from 1972 to 2015: A Systematic Review. Sports Medicine (Auckland, N.Z.), 51(2), 303-320. https://doi.org/10.1007/s40279-020-01373-x

Gómez-Campos, R., Andruske, C. L., Arruda, M. de, Sulla-Torres, J., Pacheco-Carrillo, J., Urra-Albornoz, C., & Cossio-Bolaños, M. (2018). Normative data for handgrip strength in children and adolescents in the Maule Region, Chile: Evaluation based on chronological and biological age. PLOS ONE, 13(8), e0201033. https://doi.org/10.1371/journal.pone.0201033

Chaput, J.-P., Willumsen, J., Bull, F., Chou, R., Ekelund, U., Firth, J., Jago, R., Ortega, F. B., & Katzmarzyk, P. T. (2020). 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5-17 years: Summary of the evidence. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 141. https://doi.org/10.1186/s12966-020-01037-z

Chen, W., Hammond-Bennett, A., Hypnar, A., & Mason, S. (2018). Health-related physical fitness and physical activity in elementary school students. BMC Public Health, 18(1), 195. https://doi.org/10.1186/s12889-018-5107-4

Magnussen, C. G., Schmidt, M. D., Dwyer, T., & Venn, A. (2012). Muscular fitness and clustered cardiovascular disease risk in Australian youth. European Journal of Applied Physiology, 112(8), 3167-3171. https://doi.org/10.1007/s00421-011-2286-4

Markovic, G., & Jaric, S. (2004). Movement performance and body size: The relationship for different groups of tests. European Journal of Applied Physiology, 92(1), 139-149. https://doi.org/10.1007/s00421-004-1076-7

Martínez-López, E. J., De La Torre-Cruz, M. J., Suárez-Manzano, S., & Ruiz-Ariza, A. (2018). Analysis of the Effect Size of Overweight in Muscular Strength Tests Among Adolescents: Reference Values According to Sex, Age, and Body Mass Index. Journal of Strength and Conditioning Research, 32(5), 1404-1414. https://doi.org/10.1519/JSC.0000000000001967

Milliken, L. A., Faigenbaum, A. D., Loud, R. L., & Westcott, W. L. (2008). Correlates of Upper and Lower Body Muscular Strength in Children. The Journal of Strength & Conditioning Research, 22(4), 1339. https://doi.org/10.1519/JSC.0b013e31817393b1

Molenaar, H. M. (Ties), Zuidam, J. M., Selles, R. W., Stam, H. J., & Hovius, S. E. R. (2008). Age-Specific Reliability of Two Grip-Strength Dynamometers When Used by Children. JBJS, 90(5), 1053. https://doi.org/10.2106/JBJS.G.00469

Moliner-Urdiales, D., Ruiz, J. R., Ortega, F. B., Jiménez-Pavón, D., Vicente-Rodriguez, G., Rey-López, J. P., Martínez-Gómez, D., Casajús, J. A., Mesana, M. I., Marcos, A., Noriega-Borge, M. J., Sjöström, M., Castillo, M. J., Moreno, L. A., & AVENA and HELENA Study Groups. (2010). Secular trends in health-related physical fitness in Spanish adolescents: The AVENA and HELENA studies. Journal of Science and Medicine in Sport, 13(6), 584-588. https://doi.org/10.1016/j.jsams.2010.03.004

Morikawa, S. Y., Fujihara, K., Hatta, M., Osawa, T., Ishizawa, M., Yamamoto, M., Furukawa, K., Ishiguro, H., Matsunaga, S., Ogawa, Y., Shimano, H., & Sone, H. (2018). Relationships among cardiorespiratory fitness, muscular fitness, and cardiometabolic risk factors in Japanese adolescents: Niigata screening for and preventing the development of non-communicable disease study-Agano (NICE EVIDENCE Study-Agano) 2. Pediatric Diabetes, 19(4), 593-602. https://doi.org/10.1111/pedi.12623

Pate, R. R., Burgess, M. L., Woods, J. A., Ross, J. G., & Baumgartner, T. (1993). Validity of field tests of upper body muscular strength. Research Quarterly for Exercise and Sport, 64(1), 17-24. https://doi.org/10.1080/02701367.1993.10608774

Sandercock, G. R. H., & Cohen, D. D. (2019). Temporal trends in muscular fitness of English 10-year-olds 1998-2014: An allometric approach. Journal of Science and Medicine in Sport, 22(2), 201-205. https://doi.org/10.1016/j.jsams.2018.07.020

Sánchez-Delgado, A., Pérez-Bey, A., Izquierdo-Gómez, R., Jimenez-Iglesias, J., Marcos, A., Gómez-Martínez, S., Girela-Rejón, M. J., Veiga, O. L., & Castro-Piñero, J. (2023). Fitness, body composition, and metabolic risk scores in children and adolescents: The UP&DOWN study. European Journal of Pediatrics, 182(2), 669-687. https://doi.org/10.1007/s00431-022-04707-1

Schlegel, P., Křehký, A., & Hiblbauer, J. (2022). Physical Fitness Improvement after 8 Weeks of High-intensity Interval Training with Air Bike. Sport Mont, 20, 75-80. https://doi.org/10.26773/smj.221012

Smith, J. J., Eather, N., Morgan, P. J., Plotnikoff, R. C., Faigenbaum, A. D., & Lubans, D. R. (2014). The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Medicine (Auckland, N.Z.), 44(9), 1209-1223. https://doi.org/10.1007/s40279-014-0196-4

Steene-Johannessen, J., Anderssen, S. A., Kolle, E., & Andersen, L. B. (2009). Low muscle fitness is associated with metabolic risk in youth. Medicine and Science in Sports and Exercise, 41(7), 1361-1367. https://doi.org/10.1249/MSS.0b013e31819aaae5

Tomkinson, G. R., Carver, K. D., Atkinson, F., Daniell, N. D., Lewis, L. K., Fitzgerald, J. S., Lang, J. J., & Ortega, F. B. (2018). European normative values for physical fitness in children and adolescents aged 9-17 years: Results from 2 779 165 Eurofit performances representing 30 countries. British Journal of Sports Medicine, 52(22), 1445-14563. https://doi.org/10.1136/bjsports-2017-098253

Veldhuizen, S., Cairney, J., Hay, J., & Faught, B. (2015). Relative age effects in fitness testing in a general school sample: How relative are they? Journal of Sports Sciences, 33(2), 109-115. https://doi.org/10.1080/02640414.2014.934708

Wind, A. E., Takken, T., Helders, P. J. M., & Engelbert, R. H. H. (2010). Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? European Journal of Pediatrics, 169(3), 281-287. https://doi.org/10.1007/s00431-009-1010-4

Similar Articles

You may also start an advanced similarity search for this article.